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LATER:
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| Expectation intervals

assessment of
lower and upper expectations
of certain gambles

v

corresponding CONSERVATIVE
credal set M INFERENCE

v

lower and upper envelopes
E(g) :== min{Ep(g): P M}

E(g) := max{Ep(q): P M}
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Lower and upper expectations

Lower expectation:
+ inf f < E(f)
+ E(f+g) = E(f) + E(9)
+ E(AM) = MAE(HforA =0

Conjugacy:

+ E(f) = —E(-h
Expectation:

+ inf f < E(f)

+ E(f+9) = E(f) + E(9)
+ E(Af) = AE(f) forall A
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| Lower and upper expectations

Lower expectation:

+
LOWER Conjugacy:
PREVISIONS N

Expectation:
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| Binary choice: desirable gambles

Agamble f: Q — Ris desirable if it is strictly preferred to the
zero gamble 0—the status quo.

The logic of desirability is based on elementary statements

Fpf—
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| Binary choice: desirable gambles

The logic behind desirable gambles underlies all of (finitary)

ALLOWING FOR probability theory.

IMPRECISION LAYS BARE
THE CONSERVATIVE
INFERENCE MECHANISM
BEHIND PROBABILISTIC
REASONING

E(f) ;== sup{a e R: p (f—a)}

Bayes's rule is part of this logic and is therefore deductive:

%Eg E(flJA) =sup{aeR: tp (f—a)la}
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| Non-binary choice: desirable sets of gambles

RECALL: BINARY CHOICE

The logic of desirable gambles is governed by:
+ t/p 0
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Non-binary choice: desirable sets of gambles

REPRESENTATION RESULTS:
Levi's E-admissibility but with
— coherent set of desirable

gambles instead of prob-

ability measure

— sets not necessarily
closed nor convex

— extra axioms add extra
structure
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Non-binary choice: desirable sets of gambles

ALLOWING FOR
IMPRECISION LAYS BARE
THE LINK BETWEEN
PROBABILISTIC REASONING
AND CHOICE THEORY, AND
EXTENDS IT SIGNIFICANTLY
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Imprecision in stochastic processes

X1, X5, X3, ...
\ Situations s € S are the nodes in the event tree:

- Paths w € Q are the leaves in the event tree:
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| Imprecision in stochastic processes

F(2)

X1 X2, X3, e

Situations s € S are the nodes in the event tree:
finite strings of states

Paths w € Q are the leaves in the event tree:
infinite strings of states

Aprocess F: S — R attaches a real number F(s) to every
situation s.
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| Imprecision in stochastic processes

e A probability tree attaches a to
0 }E every situation s.

10 -

101 ==

100 -+
01 =

010 -

001 -+

[=3
o
I3
o

000 -+

Gert de Cooman - 19



Imprecision in stochastic processes

Im
o

A precise probability tree attaches a local mass function ps to
every situation s.

An imprecise probability tree attaches a local lower expect-
ation E; to every situation s.
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Imprecision in stochastic processes

A precise probability tree attaches a local mass function ps to

every situation s.

An imprecise probability tree attaches a local set of desirable

gambles Ds to every situation s.
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Imprecision in stochastic processes

m
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010 -
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001 -+

00 )foo
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A probability tree attaches a to
every situation s.

An probability tree attaches a
to every situation s.

An imprecise probability tree is equivalent to a set of precise
probability trees.

Animprecise probability tree is equivalent to a convex
closed set of special processes, called supermartingales.
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| Imprecision in Markov chains
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| Imprecision in Markov chains
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W Due to the
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1 My

- many inferences in become polyno-

5 DEO mial in complexity, no longer exponential.
100 -

M

on e+ By allowing for imprecision, we can efficiently calcu-

o 351 late conservative bounds on the behaviour of precise
010 - stochastic processes that are not Markov.
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| Imprecision in algorithmic randomness
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| Imprecision in algorithmic randomness
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| Imprecision in algorithmic randomness

1) ™ random for probability tree
. Dj‘ o but not 1)
T random for probability tree
: on
h Xo EXAMPLE:
o) v NONSTATIONARY PRECISE = STATIONARY IMPRECISE
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| Imprecision in algorithmic randomness
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IN SUMMARY



J Insummary ...

IMPRECISION IN PROBABILITY THEORY ALLOWS US AND HELPS US TO

+ deal honestly and systematically with indecision and incompleteness

+ see the precise special case in a much wider, structured mathematical perspective and
context

+ identify and use the logic and conservative inference mechanisms behind probabilistic
reasoning

+ provide a natural link between measure-theoretic and game-theoretic probability

+ look at and use simpler and more conservative models that are computationally more
tractable
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THE END - FOR NOW



