Conditional Probabilities and the value of information

Outline

- 1. Pricing variables contingent on events, and conditional probabilities.
- 2. A short review of a familiar result from "Bayesian" decision theory about the value of cost-free information.
- **3.** Consideration of when that familiar result fails because one of its premises is false.
- Moral Hazard: A simple 2-person game (from Osborne's fine textbook) where <u>both</u> players prefer that player-2 *not* learn some "cost-free" information on the condition that, otherwise, player-1 would know of player-2's change in information.
- IP Dilation and the value of new information.

1. De Finetti coherence and conditional probabilities.

De Finetti's coherence game – pricing random variables – extends to pricing a variable <u>contingent on an event occurring</u>, using this idea.

Let X be a random variable and F an event.

Aside: Recall that random variables are bounded, *B*-measurable real-valued functions, and that events are the special case of 0-1 random variables.

The *Bookie* fixes a (2-sided) contingent fair price for X, given F, q_{XIF} .

When the *Gambler* chooses the strategy $\gamma_{X|F}$ that fixes a contract.

In state ω , the *Gambler* pays to the *Bookie* the amount $\gamma_{XIF} F(\omega)[X(\omega) - q_{XIF}].$

So, if event *F* fails to occur (i.e., $F(\omega) = 0$) the contract is void. And if *F* occurs, the payoffs follow the usual scheme. De Finetti established that, in order for the Bookie's 2-sided (fair) prices q_X and contingent prices, given an event F, $q_{X|F}$ to be coherent there exists a f.a. probability *P* where

and

$$q_i = E_P(X_i)$$

 $q_{XIF} = E_P(X_i | F), \quad \text{if } P(F) > 0$
 $q_{XIF} \quad \text{is unconstrained}, \quad \text{if } P(F) = 0.$

For indicator variables, A, B, what coherence requires is P(AB) = P(B)P(A|B) = P(A)P(B|A)

Note well: Contingent pricing involves no change in information. Neither for the *Bookie*, nor for the *Gambler*.
De Finetti's coherence criterion is a <u>static</u> constraint.

The *Bookie* offers a price for X, that yields a non-trivial contract on the condition that event F occurs.Not on the condition that event G: The *Bookie learns* that F occurs.

Coherence does not entail a familiar dynamic "Bayes" learning model. Bayes' Rule for updating:

At time t_0 *YOU* have coherent, 2-sided prices and contingent prices agreeing with the probability *P*.

At the later time t₁ YOU learn (only) that event F occurs –

YOUR total new evidence is summarized by *F*.

Then at time t_1 YOUR updated coherent, 2-sided prices and contingent prices agree with the conditional probability P(|F).

For ease of discussion in what follows, add to Coherence the <u>commitment</u> to use Bayes' rule for updating.

2. A basic theorem of (Bayesian) Expected Utility Theory

If you can postpone a terminal decision in order to observe, *cost free*, an experiment whose outcome might change your terminal decision, then it is strictly better to postpone the terminal decision in order to acquire the new evidence.

The analysis also provides a value for the new evidence, to answer: How much are you willing to pay for the new information? An agent faces a current decision:

- with *k* terminal options $D = \{d_1, ..., d^*, ..., d_k\}$ (*d** is the best of these)
- and one sequential option: first conduct experiment *X*, with outcomes

 $\{x_1, ..., x_m\}$ that are observed, then choose from *D*.

Terminal decisions (acts) as functions from states to outcomes The canonical decision matrix: **decisions** × **states**

What are "outcomes"? That depends upon which version of expected utility you consider. We will allow arbitrary outcomes, providing that they admit a von Neumann-Morgenstern cardinal utility $U(\bullet)$.

- A central theme of Subjective Expected Utility [SEU] is this:
 - axiomatize (weak) preference ≤ over decisions so that

 $d_1 \leq d_2 \quad iff \quad \Sigma_j \operatorname{P}(s_j) \operatorname{U}(o_{1j}) \leq \Sigma_j \operatorname{P}(s_j) \operatorname{U}(o_{2j}),$

for one subjective (personal) probability P(•) defined over *states*

and one cardinal utility $U(\bullet)$ defined over *outcomes*.

Then the decision rule is to choose that (an) option that maximizes SEU.

Note: In this version of SEU, which is the one that we will use here:

(1) decisions and states are probabilistically independent, $\mathbf{P}(s_j) = \mathbf{P}(s_j | d_i)$. **Reminder**: This is sufficient for a general *dominance* principle.

(2) Utility is state-independent, $U_j(o_{ij}) = U_h(o_{gh})$, if $o_{ij} = o_{gh}$. Here, $U_j(o_{\bullet j})$ is the conditional utility for outcomes, given state s_j .

(3) (Cardinal) Utility is defined up to positive linear transformations, $U'(\bullet) = aU(\bullet) + b$ (a > 0) is also the same utility function for purposes of *SEU*.

Note: More accurately, under these circumstances with act/state prob. independence, utility is defined up to a similarity transformation: $U_j'(\bullet) = aU_j(\bullet) + b_j$. So, maximizing SEU and Maximizing Subjective Expected Regret-Utility are equivalent decision rules. Reconsider the value of cost-free evidence when decisions conform to maximizing *SEU*. Recall, the decision maker faces a choice *now* between *k*-many terminal options $D = \{d_1, ..., d^*, ..., d_k\}$ (*d** maximizes SEU among these k options). There is one sequential option: first conduct experiment *X*, with sample space $\{x_1, ..., x_m\}$, and then choose from *D* having observed *X*. Options in *red* maximize SEU at the choice nodes, using P(s_j | X = x_i).

Day 2, Session 2, SIPTA Summer School 2022 – Conditional probabilities and the value of information

By the law of conditional expectations: E(Y) = E(E[Y|X]).

With Y the Utility of an option U(d), and X the outcome of the experiment,

 $\begin{aligned} \operatorname{Max}_{d \in D} \ E(U(d)) &= E\left(U(d^*)\right) \\ &= E\left(E\left(U(d^*) \mid X\right)\right) \text{ ("ignoring X" when choosing)} \\ &\leq E\left(\operatorname{Max}_{d \in D} \ E(U(d) \mid X)\right) \\ &= U(\text{sequential option}). \end{aligned}$

- Hence, the academician's *first-principle*: Never decide today what you might postpone until tomorrow in order to learn something new.
- $U(d^*) = U($ sequential option) if and only if the new evidence X never leads you to a different terminal option.
- U(sequential option) E(U(d*)) is the value of the experiment: what you will pay (at most) in order to conduct the experiment prior to making a terminal decision.

Example 4: Optimal Stopping: sample size, fixed versus adaptive sampling

• See the addendum for this session's notes

3. Failure of the value of cost-free information when there is *Moral Hazard*.

Recall: With act/state dependence even simple dominance is no longer valid!

	ω1	
Act ₁	3	1
Act ₂	4	2

Regardless that Act₂ dominates Act₁, if $P(\omega_i | Act_i) > \frac{3}{4}$ then Act₁ has greater (conditional) expected utility than Act₂.

The typical model for act/state dependence is the presence of Moral Hazard, (e.g., in insurance) where the states of uncertainty for the decision maker involve the actions of another (rational) agent – as in a game!

However, regarding the principal result about the value of cost-free information, it is a side-issue whether the act/state dependence involves the actions of another decision-maker, or not.

13

A Toy Example of act/state dependence without Moral Hazard where new (cost free) information has negative value.

Binary Terminal Decision		ω1	ω2
	d_1	1	0
	d_2	0	1

Suppose $P(\omega_1) = .75$. Without added information $d^* = d_1$, and $U(d^*) = .75$. Let $X = \{0,1\}$ be an irrelevant binary variable with likelihood,

$$P(X=0 | \omega_1) = P(X=0 | \omega_2) = .80.$$

So, X is irrelevant to Ω .

However, suppose that the decision to <u>observe</u> X alters the "prior" probability over Ω so that, $P(\omega_1 | observe X) = .60 < .75$.

• The decision to observe X creates the experiment X.

Then U(observe X) = .60 < 75.

In this case, because of act/state dependence, the decision maker strictly prefers not to observe (cost free) X prior to making the terminal decision $D = \{d_1, d_2\}$. Osborne's game (from p. 283 of his Game Theory textbook).

This game has a unique Nash equilibrium, (B, L), with payoffs (2, 2).

If Column (player-2) learns the state prior to choosing, and Row knows that, then the game has a unique Nash (T, < R, L>), with payoffs $(1, 3\varepsilon)$.

So, both players prefer the first form of the game, where Column remains ignorant of the state, and Row knows that.

	$\mathbf{P}(T \And \tau_1)$	$\mathbf{P}(\boldsymbol{B} \And \boldsymbol{\tau}_1)$	$\mathbf{P}(T \And \tau_2)$	$P(B \& \tau_2)$
	$= \alpha/2$	$= (1-\alpha)/2$	$= \alpha/2$	$= (1-\alpha)/2$
L	2ε	2	2ε	2
M	0	0	3ε	3
R	3ε	3	0	0

with $0 < \varepsilon \leq 1/2$

 $\frac{\text{Column-player's probability assumptions}}{P(type = \tau_1) = \frac{1}{2}}. P(Top) = \alpha. P(Row \& type) = P(Row)/2 - \text{these are}}{Independent factors. Moreover, since play is simultaneous between players:$ P(Row & type | Column's act) = P(Row & type).

Here we have act/state *independence* in the game with simultaneous play.

Column Player's Expected Utilities for the three options $U[L] = 2(1 - \alpha(1-\epsilon)) > U[M] = (3/2)(1 - \alpha(1-\epsilon)) = U[R] = (3/2)(1 - \alpha(1-\epsilon))$ So, Column-player chooses *L*, regardless the value of α .

This is known to Row-player, who then chooses *B* to maximize her/his utility. That choice also is known to Column player; hence, $\alpha = 0$.

Then Column's U[L] = 2. Likewise, 2 is the sure payoff for Row's choice B.

Version 2*a* – Column-player learns her/his type prior to choosing a terminal option, and Row-player knows only that fact.

Contingent play given Column-player's type.

\{L, M, R\} contingent on his/her type, τ_i (i = 1, 2)thenR dominates both M and L, given type = τ_1

and *M* dominates both *L* and *R*, given type = τ_{2} .

So the dominant contingent strategy for Column player is (R if τ_1 , M if τ_2). Since play is simultaneous between players, act/state independence obtains. So the dominant play for Column has "prior" (ex ante) expected utility,

U[*R* if $τ_1$; *M* if $τ_2$] = 3(1 - α'(1-ε)),

where α' is Column player's "prior" for Row choosing *Top* in Version 2a.

In Version 1, Column's $P(Top) = \alpha$. If $\alpha = \alpha'$, then $U[R \text{ if } \tau_1; M \text{ if } \tau_2] = 3(1 - \alpha(1 - \varepsilon)) > U[L] = 2(1 - \alpha(1 - \varepsilon))$ and Column player has <u>positive value</u> for the information of her/his type, all in accord with the Basic Result.

HOWEVER, in version 2a of the problem, since Row knows these calculations on behalf of Column, and as Row's option T dominates option B given either Mor R – with payoffs 1 vs 0 – then, Row chooses T, and Column knows this too.

• So, $\underline{\alpha' = 1} \neq \alpha = 0$ and we have act/state dependence (for Column)

In Version 2*b* of the game both players learn Column's type prior to making a terminal decision. The upshot is the same.

By dominance, Column plays: R if τ_1 ; M if τ_2 . Knowing this Row plays T, etc.

From Column's perspective, in Version 2*a* (or 2*b*), $U[R \text{ if } \tau_1; M \text{ if } \tau_2)] = 3\varepsilon < 2 = \text{Version 1's } U[L].$ Column prefers the first version of the game. Similarly for Row player!

So, if the *initial choice* (for either player to make) is whether to play Version 1, or instead to play Version 2a (or 2b) of the game, the initial choice is to play Version 1 of the game.

In this sequential problem, in choosing first between Version 1 and Version 2 of the game, and then playing the version chosen, there is act/state dependence from either player's perspective: probabilistic dependence between the player's choice of Version 1 vs. Version 2 of the game and her/his probability for how the other player chooses. From Column-player's perspective, the mere choice of version fixes the value of α – Column player's probability that Row player chooses Top, *T*.

Likewise, in choosing between Version 1 and Version 2 of the game, Row player faces act/state dependence in her/his probability for Column's behavior.

Thus, the familiar result about the non-negative value of cost-free information does not apply in this sequential game.

Each player prefers Version 1 over Version 2.

Each player prefers playing the game with less information rather than more. And that is explained by the presence of act/state dependence – for each player.

But this same phenomenon can happen when there is only one decision maker and she/he faces a problem with act/state dependence in probabilities. The opportunity to postpone a cost-free decision may have negative value (with or without the Moral Hazard of <u>another</u> decision maker's choice) provided that there is act/state dependence in personal probabilities. Note well: Though the result about the non-negative value of cost-free information is not robust over situations with act/state dependence, nonetheless:

• de Finetti's coherence is robust over situations with act/state dependence.

	<u>ω</u> 1	<u> </u>	•••	ω_k	
Act ₁	0 11	<i>0</i> ₁₂	•••	0 _{1k}	
Act ₂	<i>0</i> ₂₁	0 22	•••	o_{2k}	

Defn.: Say that Act₂ robustly dominates Act₁ if Act₂ uniformly dominates Act₁ and supremum $\{U(o_{1j})\} < infimum \{U(o_{2j})\}$.

Then regardless the act/state dependence, i.e. regardless $P_1(\omega)$ and $P_2(\omega)$,

$$\sum_{j} \mathbf{P}_{1}(\boldsymbol{\omega}_{j}) \mathbf{U}(\mathbf{o}_{1j}) < \sum_{j} \mathbf{P}_{2}(\boldsymbol{\omega}_{j}) \mathbf{U}(\mathbf{o}_{2j})$$

and

Act₁ is strictly dispreferred to Act₂.

When the *Bookie* has an incoherent set of fair-prices, and when the *Gambler* uses the strategy $\{\gamma *_i\}$, the *Bookie* suffer a uniform sure-loss $(o_{ij} < e^* < 0)$ compared with *Abstaining*.

	<u>ω</u> 1	<u> </u>	•••	<u> </u>	•••
Incoherent pricing	0 11	<i>0</i> ₁₂	•••	0 1k	•••
Abstain from playing	0	0	•••	0	•••

• Abstaining robustly dominates incoherent pricing.

There is no salvation for the Bookie from such incoherence even by allowing collusion between *Nature* (which determines ω) and the *Bookie*!

4. Negative Value of Cost-Free information within IP theory. The decision rule is not Expected Utility Maximization with a single probability distribution. For example, represent uncertainty of an event using a (convex) <u>set of probabilities</u>, *P*. Let the decision rule be

 Γ -Maximin – choose an act whose min expected utility is max w.r.t. set \mathcal{P} . Then the value of (cost free) information may be negative.

• This is the fate of inference with *pivotal variables* in statistical inference.

Next, I illustrate this situation when there is *Dilation* for sets of probabilities.

Dilation for sets of probabilities.

Let \mathcal{P} be a (convex) set of probabilities on algebra \mathcal{A} . For an event E, denote by

 $P_*(E)$ the *lower* probability of E: $inf_{P \in p} \{P(E)\}$

and $P^*(E)$ the *upper* probability of E: $sup_{P \in p} \{P(E)\}$.

Let $X = (x_1, ..., x_n)$ be a partition, here taken to be finite for simplicity.

The set of conditional probabilities $\{P(E \mid x_i)\}$ (strictly) <u>dilate</u> if

 $P_*(E | x_i) < P_*(E) \leq P^*(E) < P^*(E | x_i)$

for each i = 1, ..., n.

That is, dilation occurs provided that, for each event $(X = x_i)$ in a partition, the set of conditional probabilities for an event E, given x_i , properly include the unconditional probabilities for E.

Dilation of conditional probabilities is the opposite phenomenon to the more familiar "shrinking" of sets of opinions with increasing shared evidence.

24

Example – also illustrating when normal and extensive form decisions differSuppose A is a highly *IP-uncertain* event. That is $P^*(A) - P_*(A) \approx 1$.Let {H,T} indicate the flip of a fair coin whose outcomes are independent of A.That is,P(A,H) = P(A)/2 for each $P \in \mathcal{P}$.

Define event E by, $E = \{(A,H), (A^c,T)\}.$

```
Evidently, P(E) = .5 for each P \in P.
```

Note: E is a "pivotal" variable involving A and the coin flip.

H T

A	Ε	Ec
A ^c	Ec	E

Then $0 \approx P_*(E \mid H) < P_*(E) = .5 = P^*(E) < P^*(E \mid H) \approx 1$

and $0 \approx P_*(E \mid T) < P_*(E) = .5 = P^*(E) < P^*(E \mid T) \approx 1.$

Thus, regardless how the coin lands, conditional probability for event E dilates to a large interval, from a determinate value .5.

This example mimics Ellsberg's (1961) *paradox*, where the mixture of two *uncertain* events has a determinate probability.

Consider a sequential (extensive form) choice between:

Terminal option d₁ — Win \$.75 if E and Lose \$1.25 if E^c,

and a Sequential option X - observe the coin flip {H, T} and then choose

between d_2 — an even money \$1 bet on E. (Note: $d_1 = d_2 -$ \$.25 *fee*.)

and $d_3 - a$ fee of \$.50.

In the normal form of this problem, there are 5 options (including four combinations of how to choose between d₂ and d₃ given X).

In a pairwise choice between d₁ and d₂, d₂ (simply) dominates option d₁. In the normal form, each of d₁ and d₂ have determinate expected values

• The Expected Utility(d_1) = -1/8 and the Expected Utility(d_2) = 0. In the normal form d_1 is not *E*-admissible (nor is it Γ -maximin admissible) as d_1 fails to maximize expected utility for each $P \in \mathcal{P}$.

Each of the 3 normal-form options involving d₃ likewise is inadmissible against d₂.

Option d₂ is the unique admissible (normal form) option, with value 0.

In the sequential (extensive form) problem, conditional upon either H or T,

both choices d₂ and d₃ are (pairwise) E-admissible.

However, given H or T, d₃ maximizes minimum expected utility in a pairwise choice with d₂.

Given H (or T), d_3 has a higher, minimum conditional expected (Γ -maximin) value, equal to - $\frac{1}{2}$, than does d_2 .

The minimum conditional expected (Γ -maximin) value of d₂ equals -1. So, under the sequential option X, d₃ alone is chosen.

Then, by backward induction, a contrast at the initial node between d₁ and d₃ reveals that d₁ maximizes expected utility, with value -1/8.

- The extensive form Γ-maximin admissible option is inadmissible in the normal form.
- In this problem, the observation X has a negative value of -1/8 !

Dilation and Independence.

Independence is sufficient for dilation.

Let Q be a convex set of probabilities on algebra A and suppose we have access to a fair coin which may be flipped repeatedly: algebra C for the coin flips.

Assume the coin flips are mutually independent and, with respect to Q, also independent of events in A. Let P be the resulting convex set of probabilities on $A \times C$

(This condition is similar to, e.g., DeGroot's assumption of an extraneous continuous r.v., and is similar to the "fineness" assumptions in the theories of Savage, Ramsey, Jeffrey, etc.)

Theorem: If Q is not a singleton, there is a 2×2 table of the form $(E,E^c) \times (H,T)$ where both:

 $P_*(E \mid H) < P_*(E) = .5 = P^*(E) < P^*(E \mid H)$ $P_*(E \mid T) < P_*(E) = .5 = P^*(E) < P^*(E \mid T).$

That is, dilation occurs.

Independence is necessary for dilation.

Let P be a convex set of probabilities on algebra A. The next result is formulated for subalgebras of 4 atoms: (p_1, p_2, p_3, p_4)

Define the quantity

 $\mathbf{S}_{\mathbf{P}}(\mathbf{A}_1, \mathbf{B}_1) = p_1/(p_1+p_2)(p_1+p_3) = \mathbf{P}(\mathbf{A}_1, \mathbf{B}_1) / \mathbf{P}(\mathbf{A}_1)\mathbf{P}(\mathbf{B}_1).$

Thus, $S_P(A_1, B_1) = 1$ iff A and B are independent under P.

<u>Lemma</u>: If P displays dilation in this sub-algebra, then $\inf_{P} \{ \mathbf{S}_{\mathbf{P}}(\mathbf{A}_{1}, \mathbf{B}_{1}) \} < 1 < \sup_{P} \{ \mathbf{S}_{\mathbf{P}}(\mathbf{A}_{1}, \mathbf{B}_{1}) \}.$

Theorem: If P displays dilation in this sub-algebra, then there exists $P^{\#} \in P$ such that $S_{P} \#(A_1, B_1) = 1$.

Dilation and the ε-contaminated model.

Given probability P and $1 > \varepsilon > 0$, define the convex set

 $\mathbf{P}_{\epsilon}(\mathbf{P}) = \{(1-\epsilon)\mathbf{P} + \epsilon \mathbf{Q}: \mathbf{Q} \text{ an arbitrary probability}\}.$

This model is popular in studies of Bayesian Robustness. (See Huber, 1973, 1981; Berger, 1984.)

Also, it is equivalent to the model formed by fixing effective lower probabilities for the atoms of an algebra.

Lemma In the ε -contaminated model, dilation occurs in an algebra \mathcal{A} iff it occurs in some 2×2 subalgebra of \mathcal{A} .

So, the next result is formulated for 2x2 tables.

 $P_{\epsilon}(P) \text{ experiences dilation if and only if}$ case 1: $S_{P}(A_{1},B_{1}) > 1$ $\epsilon > [S_{P}(A_{1},B_{1}) - 1] \times \max\{P(A_{1})/P(A_{2}); P(B_{1})/P(B_{2})\}$ case 2: $S_{P}(A_{1},B_{1}) < 1$ $\epsilon > [1 - S_{P}(A_{1},B_{1})] \times \max\{1; P(A_{1})P(B_{1})/P(A_{2})P(B_{2})\}$

and case 3:
$$S_P(A_1,B_1) = 1$$

P is internal to the simplex of all distributions.

Thus, dilation occurs in the ε -contaminated model if and only if the focal distribution, P, is close enough (in the tetrahedron of distributions on four atoms) to the saddle-shaped surface of distributions which make A and B independent.

Here, S_P provides one relevant index of the proximity of the focal distribution P to the surface of independence.

33

SUMMARY for Session 2.

We reviewed a basic result about the value of new information, when cost-free information has non-negative value relative to a terminal decision.

We considered two departures from this basic result:

- (1) When the agent's opinion has act/state probabilistic dependence, then cost-free evidence may have negative value. We saw how this may arise in a simple 2-person Bayesian game – Osborne's game.
- (2) When the agent uses, e.g., IP-decision making then *dilation* results in cost-free evidence wit

Addendum: Experiment Design and Optimal Stopping *Example 4*: Choosing sample size, fixed versus adaptive sampling See the addendum for this session's notes

(DeGroot, chpt. 12)

The statistical problem has a terminal choice between two options, $D = \{ d_1, d_2 \}$. There are two states $S = \{s_1, s_2\}$, with outcomes that form a *regret* matrix: $U(d_1(s_1)) = U(d_2(s_2)) = 0$, $U(d_1(s_2)) = U(d_2(s_1)) = -b < 0$.

$$\begin{array}{ccc} S_1 & s_2 \\ d_1 & 0 & -b \\ d_2 & -b & 0 \end{array}$$

Obviously, according to SEU, $d^* = d_i$ if and only if $P(s_i) \ge .5$ (I = 1, 2).

Assume, for simplicity that $P(s_1) = p < .5$, so that $d^* = d_2$ with $E(U(d_2)) = -pb$.

The sequential option: There is the possibility of observing a random variable $X = \{1, 2, 3\}$. The statistical model for X is given by:

$$P(X = 1 | s_1) = P(X = 2 | s_2) = 1 - \alpha.$$

$$P(X=1 | s_2) = P(X=2 | s_1) = 0.$$

$$P(X=3 | s_1) = P(X=3 | s_2) = \alpha.$$

Thus, X = 1 or X = 2 identifies the state, which experimental outcome has conditional probability 1- α on a given trial; whereas X = 3 is an irrelevant datum, which occurs with (unconditional) probability α .

Assume that X may be observed repeatedly, at a cost of *c*-units per observation, where repeated observations are conditionally *iid*, given the state *s*.

- *First*, we determine what is the optimal fixed sample-size design, $N = n^*$.
- Second, we show that a sequential (adaptive) design is better than the best fixed sample design, by limiting ourselves to samples no larger than n^* .
- *Third*, we solve for the global, optimal sequential design as follows:
 - We use Bellman's principle ("backward induction) to determine the optimal sequential design bounded by $N \le k$ trials.
 - By letting $k \rightarrow \infty$, we solve for the global optimal sequential design in this decision problem.

• The best, fixed sample design.

Assume that we have taken n > 0 observations: $\widetilde{X} = (x_1, ..., x_n)$

The posterior prob., $P(s_1 | \widetilde{X}) = 1$ ($P(s_2 | \widetilde{X}) = 1$ $x_i = 2$) if $x_i = 1$ for some I = 1, ..., *n*. Then, the terminal choice is made at no loss, but *nc* units are paid out for the experimental observation costs. Otherwise, $P(s_1 | \widetilde{X}) = P(s_1) = p$, when all the $x_i = 3$ (I = 1, ..., n), which occurs with probability α^n . Then, the terminal choice is the same as would be made with no observations, d_2 , having the same expected loss, *-pb*, but with *nc* units paid out for the experimental observation costs.

That is, the pre-trial (SEU) value of the sequential option to sample *n*-times and then make a terminal decision is:

E(sample *n* times before deciding) = -[$pb\alpha^n + cn$].

Assume that c is sufficiently small (relative to $(1-\alpha)$, p and b) to make it worth sampling at least once, i.e. $-pb < -[pb\alpha + c]$, or $c < (1-\alpha)pb$

Thus, with the pre-trial value of the sequential option to sample *n*-times and then make a terminal decision:

E(sample *n* times before deciding) = -[$pb\alpha^n + cn$].

• then the *optimal fixed sample size design* is, approximately (obtained by treating *n* as a continuous quantity):

$$\boldsymbol{n^*} = \frac{-\log[pb\log(1/\alpha)/c]}{1/\log(1/\alpha)}$$

• and the *SEU* of the optimal fixed-sample design is approximately

 $E(\text{sample } n^* \text{ times then decide}) = -(c/\log(1/\alpha)) [1 + \log [pb \log(1/\alpha) / c]]$

> – *pb* = *E*(decide without experimenting)

40

- Next, consider the plan for bounded sequential stopping, where we have the option to stop the experiment after each trial, up to *n** many trials.
 At each stage, *n*, prior to the *n**th, evidently, it matters for stopping only whether or not we have already observed X = 1 or X = 2.
 - For if we have then we surely stop: there is no value in future observations.
 - If we have not, then it pays to take at least one more observation, if we may (if n < n*), since we have assumed that c < (1-α)pb.

If we stop after *n*-trials ($n < n^*$), having seen X = 1, or X = 2, our loss is solely the cost of the observations taken, *nc*, as the terminal decision incurs no loss. Then, the expected number of observations *N* from bounded sequential stopping (which follows a *truncated negative binomial* distn) is:

$$E(N) = (1-\alpha^{n^*})/(1-\alpha) < n^*.$$

Thus, the Subjective Expected Utility of (bounded) sequential stopping is:

 $-[pb\alpha^{n^*} + cE(N)] > -[pb\alpha^{n^*} + cn^*].$

• What of the unconstrained sequential stopping problem? With the terminal decision problem $D = \{ d_1, d_2 \}$, what is the global, optimal experimental design for observing X subject to the constant cost, *c*-units/trial and the assumption that $c < (1-\alpha)pb$?

Using the analysis of the previous case, we see that if the sequential decision is for bounded, optimal stopping, with $N \leq k$, the optimal stopping rule is to continue sampling until either $X_i \neq 3$, or N = k, which happens first. Then, we see that $E_{N \leq k}(N) = (1 - \alpha^k)/(1 - \alpha)$ and the SEU of this stopping rule is $-[pb\alpha^k + c(1 - \alpha^k)/(1 - \alpha)]$, which is monotone increasing in k. Thus the global, optimal stopping rule is the unbounded rule: continue with

experimentation until X = 1 or = 2, which happens with probability 1.

 $E(N) = 1/(1-\alpha)$ and the SEU of this stopping rule is $-[c/(1-\alpha)]$.

Note: Actual costs here are unbounded!

The previous example illustrates a basic technique for finding a global optimal sequential decision rule:

1) Find the optimal, *bounded* decision rule d_k^* when stopping is mandatory at N = k. In principle, this can be achieved by *backward induction*, by considering what is an optimal terminal choice at each point when N = k, and then using that result to determine whether or not to continue from each point at N = k-1, etc.

- 2) Determine whether the sequence of optimal, bounded decision rules converge as $k \rightarrow \infty$, to the rule d_{∞}^{*} .
- 3) Verify that d_{∞}^* is a global optimum.