SIPTA

SIPTA Summer School 15–19 August 2022 University of Bristol

Desirability

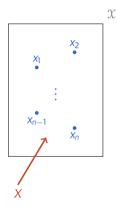
- the basics of inference under uncertainty

Gert de Cooman

Foundations Lab for imprecise probabilities

BASIC SETUP

Uncertainty about a variable



You are uncertain about the value of a variable X in a set \mathfrak{X} .

- You = a subject aiming to be rational
- possibility space $\mathcal{X} = \{x_1, \dots, x_n\}$ is finite!
- notation:

lowercase x = a possible value, or the actual value uppercase X = the unknown value

Gambles on a variable

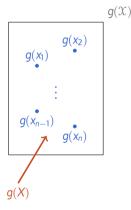
A gamble g (on the variable X) is an uncertain reward whose value depends on the value of X in \mathcal{X} .

Rewards are expressed in units of some linear utility scale.

 $g\colon \mathfrak{X} \to \mathbb{R}$

We also denote this gamble by g(X).

Gambles on a variable



A gamble g (on the variable X) is an uncertain reward whose value depends on the value of X in \mathcal{X} .

Rewards are expressed in units of some linear utility scale.

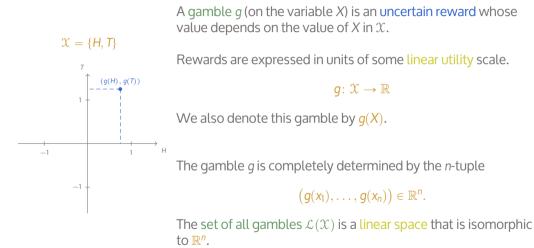
 $g\colon {\mathfrak X} \to {\mathbb R}$

We also denote this gamble by g(X).

The gamble *g* is completely determined by the *n*-tuple

 $(g(x_1),\ldots,g(x_n))\in\mathbb{R}^n.$

Gambles on a variable



Gert de Cooman · 4

PREFERENCE AND DESIRABILITY

Strict preference orderings

Your beliefs about what value X assumes in \mathfrak{X} may lead you to (strictly) prefer one uncertain reward g(X) over another h(X):

g > h.

Strict preference orderings

Weak strict ordering:

W₁. g > g for no $g \in \mathcal{L}(\mathcal{X})$;

$$\begin{split} W_2, \ \ \text{if} \ g_1 > g_2 \ \text{and} \ g_2 > g_3 \\ \text{then} \ g_1 > g_3, \ \text{for} \\ \text{all} \ g_1, g_2, g_3 \in \mathcal{L}(\mathcal{X}). \end{split}$$

Strict vector ordering:

 $V_1. \ g > h \Leftrightarrow \lambda g > \lambda h,$ for all $\lambda > 0$;

 $\begin{array}{ll} \mathsf{V_2.} & g_1 > g_2 & \Leftrightarrow \\ & g_1 + h > g_2 + h, \\ & \text{for all } h \in \mathcal{L}(\mathcal{X}). \end{array}$

Dominance \geq : $g \geq h \Leftrightarrow$ $g(x) \geq h(x)$ for all $x \in \mathcal{X}$. Strict dominance >: $g > h \Leftrightarrow (g \geq h \text{ and } g \neq h)$. Your beliefs about what value X assumes in \mathcal{X} may lead you to (strictly) prefer one uncertain reward g(X) over another h(X):

g > h.

The binary relation > on $\mathcal{L}(\mathcal{X})$:

- is a weak strict ordering due to basic rationality requirements;
- is a strict vector ordering due to the linearity of the utility scale;
- respects strict dominance: if g > h then g > h.

Strict preference orderings

Your beliefs about what value X assumes in \mathfrak{X} may lead you to (strictly) prefer one uncertain reward g(X) over another h(X):

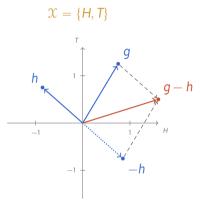
The binary relation > on $\mathcal{L}(\mathcal{X})$:

- is a weak strict ordering due to basic rationality requirements;
- is a strict vector ordering due to the linearity of the utility scale;
- respects strict dominance: if g > h then g > h.

Incomparability does not imply equivalence.

We allow for PARTIAL preference!

g > h.



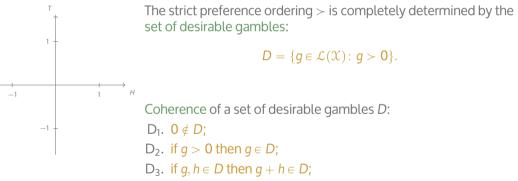
 $g > h \Leftrightarrow g - h > 0.$

The strict preference ordering > is completely determined by the set of desirable gambles:

 $D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.$

Gert de Cooman · 7

 $g > h \Leftrightarrow g - h > 0.$



D₄. if $g \in D$ then $\lambda g \in D$ for $\lambda > 0$.

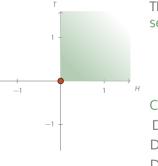
-1

Н

 $g > h \Leftrightarrow g - h > 0.$


```
D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.
```

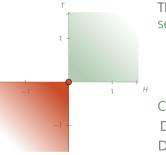
 $g > h \Leftrightarrow g - h > 0.$



The strict preference ordering > is completely determined by the set of desirable gambles:

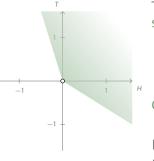
 $D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.$

 $g > h \Leftrightarrow g - h > 0.$



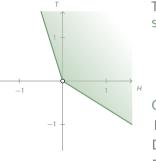
The strict preference ordering > is completely determined by the set of desirable gambles:

 $D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.$



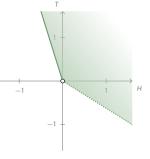
The strict preference ordering > is completely determined by the set of desirable gambles:

 $D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.$



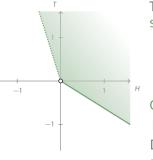
The strict preference ordering > is completely determined by the set of desirable gambles:

 $D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.$



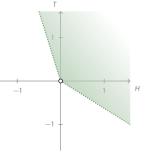
The strict preference ordering > is completely determined by the set of desirable gambles:

 $D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.$



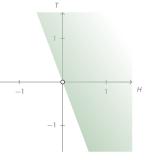
The strict preference ordering > is completely determined by the set of desirable gambles:

```
D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.
```

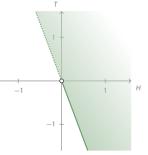
The strict preference ordering > is completely determined by the set of desirable gambles:

 $D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.$



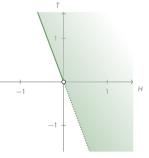
The strict preference ordering > is completely determined by the set of desirable gambles:

 $D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.$



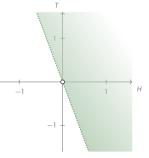
The strict preference ordering > is completely determined by the set of desirable gambles:

```
D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.
```

The strict preference ordering > is completely determined by the set of desirable gambles:

```
D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.
```

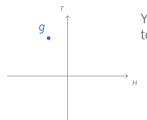



The strict preference ordering > is completely determined by the set of desirable gambles:

```
D = \{g \in \mathcal{L}(\mathcal{X}) \colon g > \mathbf{0}\}.
```

CONSERVATIVE INFERENCE

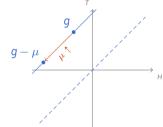
⊢_D *g*



You state that a gamble *g* is desirable when You strictly prefer it to the zero gamble (status quo).

Gert de Cooman · 9

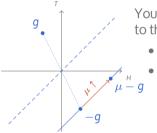
⊢_D g



You state that a gamble *g* is desirable when You strictly prefer it to the zero gamble (status quo).

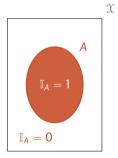
• $\vdash_{\mathsf{D}} (g - \mu)$: You are willing to buy the gamble g for a price μ ;

⊢_D g



You state that a gamble *g* is desirable when You strictly prefer it to the zero gamble (status quo).

- $\vdash_{\mathsf{D}} (g \mu)$: You are willing to buy the gamble g for a price μ ;
- $\vdash_{\mathsf{D}} (\mu g)$: You are willing to sell the gamble g for a price μ ;



⊢_D *g*

You state that a gamble *g* is desirable when You strictly prefer it to the zero gamble (status quo).

- $\vdash_{\mathsf{D}} (g \mu)$: You are willing to buy the gamble g for a price μ ;
- $\vdash_{\mathsf{D}} (\mu g)$: You are willing to sell the gamble g for a price μ ;
- $\vdash_{\mathsf{D}} (\mathbb{I}_{\mathsf{A}} \alpha)$: You are willing to bet on the event A at betting rate α ;
- ⊢_D (α − I_A): You are willing to bet against the event A at betting rate 1 − α

A logic of desirability statements

What are the consequences of making an assessment A?

An assessment \mathcal{A} collects (some) gambles that You find desirable:

 $\vdash_{\mathsf{D}} g$ for all $g \in \mathcal{A}$.

A logic of desirability statements

What are the consequences of making an assessment A?

The coherence axioms constitute the basic for a logic of desirability statements:

An assessment A collects (some) gambles that You find desirable:

 $\vdash_{\mathsf{D}} g$ for all $g \in \mathcal{A}$.

D₁. $0 \notin D$; D₂. if g > 0 then $g \in D$; D₃. if $g, h \in D$ then $g + h \in D$; D₄. if $g \in D$ then $\lambda g \in D$ for $\lambda > 0$. [destruction axiom] [basic statement] [production axiom] [production axiom]

A logic of desirability statements

What are the consequences of making an assessment A?

The coherence axioms constitute the basic for a logic of desirability statements:

An assessment A collects (some) gambles that You find desirable:

 $\vdash_{\mathsf{D}} g$ for all $g \in \mathcal{A}$.

D₁. $0 \notin D$; D₂. if g > 0 then $g \in D$; D₃. if $g, h \in D$ then $g + h \in D$; D₄. if $g \in D$ then $\lambda g \in D$ for $\lambda > 0$. [destruction axiom] [basic statement] [production axiom] [production axiom]

- we call a set $D \subseteq \mathcal{L}(\mathcal{X})$ coherent if it satisfies $D_1 D_4$.
- we collect all coherent *D* in the set $\overline{\mathbf{D}}$.

 $\overline{\mathbf{D}}$ is closed under nonempty intersections:

Deductive closure operator:

```
\mathsf{cl}_{\mathbf{D}}(\mathcal{A}) \mathrel{\mathop:}= \bigcap \{ D \in \overline{\mathbf{D}} \colon \mathcal{A} \subseteq D \}
```

 $\overline{\mathbf{D}}$ is closed under nonempty intersections:

- A set $D \subseteq \mathcal{L}(\mathcal{X})$ is deductively closed if $D = cl_D(D)$;
- $D := \overline{D} \cup \{\mathcal{L}(\mathcal{X})\}$ is the set of all deductively closed sets of desirable gambles;
- An assessment \mathcal{A} is consistent if $cl_{D}(\mathcal{A}) \neq \mathcal{L}(\mathfrak{X})$.

Н

Deductive closure operator:

```
\mathsf{cl}_{\mathsf{D}}(\mathcal{A}) := \bigcap \{ D \in \overline{\mathsf{D}} \colon \mathcal{A} \subseteq D \}
```


- **D** := $\overline{\mathbf{D}}$ ∪ { $\mathcal{L}(\mathfrak{X})$ } is the set of all deductively closed sets of desirable gambles;

- An assessment \mathcal{A} is consistent if $cl_{D}(\mathcal{A}) \neq \mathcal{L}(\mathfrak{X})$.

When \mathcal{A} is consistent, then

 $\mathsf{cl}_{\mathbf{D}}(\mathcal{A}) = \mathsf{posi}(\mathcal{L}_{>0} \cup \mathcal{A})$

Deductive closure operator:

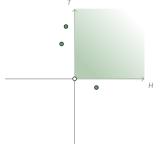
```
\mathsf{cl}_{\mathbf{D}}(\mathcal{A}) \mathrel{\mathop:}= \bigcap \{ D \in \overline{\mathbf{D}} \colon \mathcal{A} \subseteq D \}
```


- **D** := $\overline{\mathbf{D}}$ ∪ { $\mathcal{L}(\mathfrak{X})$ } is the set of all deductively closed sets of desirable gambles;

- An assessment \mathcal{A} is consistent if $cl_{D}(\mathcal{A}) \neq \mathcal{L}(\mathfrak{X})$.

When \mathcal{A} is consistent, then

 $\mathsf{cl}_{\mathbf{D}}(\mathcal{A}) = \mathsf{posi}(\mathcal{L}_{>0} \cup \mathcal{A})$



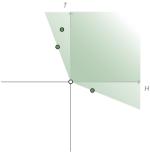
Deductive closure operator:

```
\mathsf{cl}_{\mathbf{D}}(\mathcal{A}) := \bigcap \{ D \in \overline{\mathbf{D}} \colon \mathcal{A} \subseteq D \}
```


- **D** := $\overline{\mathbf{D}}$ ∪ { $\mathcal{L}(\mathfrak{X})$ } is the set of all deductively closed sets of desirable gambles;
- An assessment \mathcal{A} is consistent if $cl_{D}(\mathcal{A}) \neq \mathcal{L}(\mathfrak{X})$.

When \mathcal{A} is consistent, then

 $\mathsf{cl}_{\mathbf{D}}(\mathcal{A}) = \mathsf{posi}(\mathcal{L}_{>0} \cup \mathcal{A})$

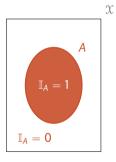


CONDITIONING

Conditioning

To bring in conditioning, we consider called-off gambles $\mathbb{I}_A g$

$$(\mathbb{I}_A g)(x) := \mathbb{I}_A(x)g(x) = \begin{cases} g(x) & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$



Conditioning

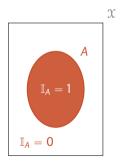
To bring in conditioning, we consider called-off gambles $I_A g$

$$(\mathbb{I}_{A}g)(x) := \mathbb{I}_{A}(x)g(x) = \begin{cases} g(x) & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

Conditional assessment in a logic of desirability statements:

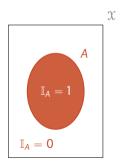
g is desirable conditional on
$$A \longrightarrow \vdash_D \mathbb{I}_A g \longrightarrow \mathbb{I}_A g \in D$$

if $x \notin A$.



Conditioning

To bring in conditioning, we consider called-off gambles $\mathbb{I}_A g$



$$(\mathbb{I}_{A}g)(x) := \mathbb{I}_{A}(x)g(x) = \begin{cases} g(x) & \text{if } x \in A \\ 0 & \text{if } x \notin A. \end{cases}$$

Conditional assessment in a logic of desirability statements:

g is desirable conditional on
$$A \longrightarrow \vdash_D \mathbb{I}_A g \longrightarrow \mathbb{I}_A g \in D$$

Conditioning operation $\cdot |A: \overline{\mathbf{D}} \to \overline{\mathbf{D}}: D \mapsto D|A$

 $g \in D|A \Leftrightarrow (g > 0 \text{ or } \mathbb{I}_A g \in D) \text{ for all } g \in \mathcal{L}(\mathcal{X})$

A LITTLE EXERCISE

Exercise on desirability: the problem

Consider next week's football match between your favourite team *Marginal* and that unspeakable team *Zichem-Zussen-Bolder*.

You make the following statements about the outcome of this match for *Marginal*:

- A win (W) is more likely than a draw (D);
- A loss (L) is more likely than a draw;
- If no draw, then a win is more than twice as likely as a loss.

Question:

Can You consistently bet on draw at rates higher than $\frac{1}{2}$?

SUMMING UP

Advantages of the desirability approach

Working with sets of desirable gambles:

- is simple, intuitive and elegant;
- gives a geometrical flavour to probabilistic inference;
- shows that probabilistic inference is a form of 'logical inference';
- avoids problems with conditioning on sets of probability zero.

Next, we will see that:

- it allows us to derive other models, such as (conditional) lower previsions, (sets of) conditional probabilities, ...;
- it is more general and more expressive than these other models.

THE END - FOR NOW