SIPTA

SIPTA Summer School 15–19 August 2022 University of Bristol

Randomness + imprecision

- what about imprecise chances?

Gert de Cooman

Foundations Lab for imprecise probabilities

Close collaboration between ...

Gert de Cooman gert.decooman@ugent.be Jasper De Bock jasper.debock@ugent.be Floris Persiau floris.persiau@ugent.be

... and discussions with ...

Philip Dawid

Volodya Vovk

Glenn Shafer

Teddy Seidenfeld

... the beginning of an answer to questions raised by ...

Terrence L. Fine (1939 – January 31, 2021)

Random sequence?

0 1 1 0 0 1 0 1 0 ...

fair coin forecasts

$\frac{1}{2} 0 \quad \frac{1}{2} 1 \quad \frac{1}{2} 1 \quad \frac{1}{2} 0 \quad \frac{1}{2} 0 \quad \frac{1}{2} 1 \quad \frac{1}{2} 0 \quad \frac{1}{2} 1 \quad \frac{1}{2} 0 \quad \dots$

precise forecasts

 $p_k \in [0,1]$

 $p_1 0 p_2 1 p_3 1 p_4 0 p_5 0 p_6 1 p_7 0 p_8 1 p_9 0 \dots$

interval forecasts

 $I_k \in \mathcal{I}$

 $I_1 O I_2 1 I_3 1 I_4 O I_5 O I_6 1 I_7 O I_8 1 I_9 O \dots$

Randomness and calibration

Randomness is about:

outcome sequence and forecast sequence

'going together well'.

- → which outcome sequences are random for a given forecast sequence?
- → which forecast sequences make a given outcome sequence random?

FORECASTS: A SINGLE OUTCOME

Forecast p for an X in \mathfrak{X}

Forecast p for an X in \mathfrak{X}

Forecasting gambles f on X:

 $f(X) \rightarrow pf(1) + (1-p)f(0)$

Forecast p for an X in \mathfrak{X}

Forecasting gambles f on X:

 $f(X) \rightarrow pf(1) + (1-p)f(0)$

Expectation

 $E_p(f) := pf(1) + (1-p)f(0) \leq 0$

Interval forecast $I = [p, \overline{p}]$ for an X in \mathfrak{X}

Forecasting gambles f on X:

 $f(X) \rightarrow$ anything between $E_{\rho}(f)$ and $E_{\overline{\rho}}(f)$

Interval forecast $I = [p, \overline{p}]$ for an X in \mathfrak{X}

Forecasting gambles f on X:

 $f(X) \rightarrow$ anything between $E_{\rho}(f)$ and $E_{\overline{\rho}}(f)$

Upper expectation

 $\overline{E}_{l}(f) := \max\{E_{p}(f), E_{\overline{p}}(f)\} \leq 0$

FORECASTS: MANY OUTCOMES

Many precise forecasts: event tree

A situation is a node in the event tree, or a finite sequence of zeroes and ones:

 $s = (x_1, \ldots, x_n) \in \mathbb{S}.$

A path is an infinite sequence of zeroes and ones:

$$\omega = (x_1,\ldots,x_n,\ldots) \in \Omega.$$

Many precise forecasts: the fair-coin tree

In a fair-coin tree, we associate a precise forecast $\frac{1}{2}$ with each situation $s \in S$.

Forecasting system

$$\varphi_{1/2} \colon \mathbb{S} \to [0,1] \colon s \mapsto \varphi(s) := \frac{1}{2}$$

Many forecasts: randomness with test

Per Martin-Löf

Going global

The local models lead to a global probability measure $P^{\varphi_{1/2}}$ on the set of all paths $\Omega = [0, 1]$.

A randomness test corresponds to a (computable) sequence of (effectively) open sets G_n , with $P^{\varphi_{1/2}}(G_n) \leq 2^{-n}$.

A path ω succeeds the randomness test if $\omega \notin \bigcap_n G_n$.

A path ω is Martin-Löf test random if it succeeds all randomness tests.

Many forecasts: randomness with (super)martingales

Many forecasts: randomness with (super)martingales

Jean Ville

Going local

A supermartingale is a capital process where a Skeptic selects, in each situation *s*, one of the gambles made available by the Forecaster's forecast $\varphi_{1/2}(s)$, and where the capital is accumulated as we move through the tree.

A betting strategy is a way of selecting an available gamble f_s in each situation *s*.

A path ω is Martin-Löf random if there is no (lower semicomputable) strategy for which the accumulated capital remains non-negative everywhere and becomes unbounded on ω .

The local and global approaches are equivalent!

Claus Peter Schnorr

Leonid Anatolievich Levin

RANDOMNESS WITH INTERVAL FORECASTS?

Many interval forecasts: the imprecise probability tree

In an imprecise probability tree, we associate an interval forecast I_s with each situation $s \in S$.

Forecasting system

$$\varphi \colon \mathbb{S} \to [0,1] \colon \mathsf{s} \mapsto \varphi(\mathsf{s}) \coloneqq I_\mathsf{s}$$

Interval forecasts: randomness with (super)martingales

Interval forecasts: randomness with (super)martingales

Going local

A supermartingale is a capital process where a Sceptic selects, in each situation s, one of the gambles made available by the Forecaster's forecast $\varphi(s)$, and where the capital is accumulated as we move through the tree.

A betting strategy is a way of selecting an available gamble f_s in each situation *s*.

A path ω is Martin-Löf random if there is no (lower semicomputable) strategy for which the accumulated capital remains non-negative everywhere and becomes unbounded on ω .

The local and global approaches are equivalent!

Going global

The local models lead to a global upper expectation \overline{E}^{φ} on the set of all paths $\Omega = [0, 1]$.

A randomness test corresponds to a (computable) sequence of (effectively) open sets G_n , with $\overline{P}^{\varphi}(G_n) \leq 2^{-n}$.

A path ω succeeds the randomness test if $\omega \notin \bigcap_n G_n$.

A path ω is Martin-Löf test random if it succeeds all randomness tests.

CONSISTENCY RESULTS

Consistency

Forecaster believes he's well-calibrated

For any forecasting system $\varphi \colon \mathbb{S} \to \mathcal{I}$, almost all paths are Martin-Löf random for φ in the imprecise probability tree that corresponds to φ .

Consistency

Let

 $R := \{ \omega \in \Omega : \omega \text{ random for } \varphi \}$

then

 $\overline{P}^{\varphi}(\operatorname{co} R) = \mathbf{0}.$

Forecaster believes he's well-calibrated

For any forecasting system $\varphi \colon \mathbb{S} \to \mathcal{I}$, almost all paths are Martin-Löf random for φ in the imprecise probability tree that corresponds to φ .

In a measure-theoretic sense, random paths are legion.

Consistency

Let

 $R := \{ \omega \in \Omega : \omega \text{ random for } \varphi \}$

then

 $\overline{P}^{\varphi}(coR)=0.$

Forecaster believes he's well-calibrated

For any forecasting system $\varphi \colon \mathbb{S} \to \mathcal{I}$, almost all paths are Martin-Löf random for φ in the imprecise probability tree that corresponds to φ .

In a measure-theoretic sense, random paths are legion.

Corollary

For any forecasting system $\varphi \colon \mathbb{S} \to \mathcal{I}$, there is at least one path that is Martin-Löf random for φ .

Constant interval forecasts

Stationary forecasting system $\varphi_I(s) := I$ for all $s \in S$.

Church randomness

Classical Church randomness

Any path ω is Church random if for any recursive selection process $S: \mathbb{S} \to \mathcal{X}$ such that $\sum_{k=0}^{n} S(\omega_{1:k}) \to \infty$:

Selection process

 $\mathsf{S}\colon \mathbb{S}\to \mathfrak{X}$

$$\lim_{n \to \infty} \frac{\sum_{k=0}^{n-1} S(\omega_{1:k}) \omega_{k+1}}{\sum_{k=0}^{n-1} S(\omega_{1:k})} = \frac{1}{2}.$$

If $S(\omega_{1:k}) = 1$ then outcome ω_{k+1} is selected in the sum.

If $S(\omega_{1:k}) = 0$ then outcome ω_{k+1} is not selected in the sum.

Church randomness

Classical Church randomness

Any path ω is Church random if for any recursive selection process $S: \mathbb{S} \to \mathcal{X}$ such that $\sum_{k=0}^{n} S(\omega_{1:k}) \to \infty$:

$$\lim_{n\to\infty}\frac{\sum_{k=0}^{n-1}S(\omega_{1:k})\omega_{k+1}}{\sum_{k=0}^{n-1}S(\omega_{1:k})}=\frac{1}{2}.$$

Martin-Löf randomness

 \Rightarrow Church randomness

Church randomness

Theorem

Consider any path ω and any constant interval forecast / that makes ω Martin-Löf random.

Then for any recursive selection process $S: \mathbb{S} \to \mathcal{X}$ such that $\sum_{k=0}^{n} S(\omega_{1:k}) \to \infty$:

$$\min I \leq \liminf_{n \to \infty} \frac{\sum_{k=0}^{n-1} S(\omega_{1:k}) \omega_{k+1}}{\sum_{k=0}^{n-1} S(\omega_{1:k})} \leq \limsup_{n \to \infty} \frac{\sum_{k=0}^{n-1} S(\omega_{1:k}) \omega_{k+1}}{\sum_{k=0}^{n-1} S(\omega_{1:k})} \leq \max I.$$

RANDOMNESS IS INHERENTLY IMPRECISE

Consider any *p* in [0, 1], and the precise forecasting system φ_p defined by

$$\varphi_p(x_1,\ldots,x_n) := p \quad \text{for all } (x_1,\ldots,x_n) \in \mathbb{S}.$$

Proposition

For any path ω that is Martin-Löf random for φ_p , and for all $l \in \mathcal{I}$:

 $I \in \mathcal{I}_{\mathsf{ML}}(\omega) \Leftrightarrow p \in I.$

Proposition

For any recursive path ω that has infinitely many zeroes and ones, and for all $l \in \mathfrak{I}$:

 $I \in \mathcal{I}_{\mathsf{ML}}(\omega) \Leftrightarrow I = [\mathbf{0}, \mathbf{1}].$

Consider any *p* and *q* in [0,1] with $p \leq q$, and the forecasting system $\varphi_{p,q}$ defined by

$$arphi_{p,q}(x_1,\ldots,x_n) := egin{cases} p & ext{if n is odd} \ q & ext{if n is even} \ \end{cases} ext{ for all } (x_1,\ldots,x_n) \in \mathbb{S}.$$

Proposition

For any path ω that is Martin-Löf random for $\varphi_{p,q}$, and for all $l \in J$:

 $I \in \mathfrak{I}_{\mathsf{ML}}(\omega) \Leftrightarrow [p,q] \subseteq I.$

Consider the precise forecasting system $\varphi_{\sim \rm 1/2}$ defined by

$$\varphi_{\sim 1/2}(x_1,\ldots,x_n) := \frac{1}{2} + (-1)^n \sqrt{\frac{8}{n+33}} \text{ for all } (x_1,\ldots,x_n) \in \mathbb{S}.$$

Proposition

For any path ω that is Martin-Löf random for $\varphi_{\sim 1/2}$, and for all $l \in \mathcal{I}$:

$$l \in \mathfrak{I}_{\mathsf{ML}}(\omega) \Leftrightarrow \min l < \frac{1}{2} \text{ and } \max l > \frac{1}{2}.$$

Randomness is inherently imprecise

Theorem

For any stationary interval forecast *I* there is some path $\omega \in \Omega$ that is Martin-Löf random for φ_I , but never Martin-Löf random for any computable forecasting system φ with smaller imprecision:

 $\sup_{s\in\mathbb{S}} \left[\max\varphi(s) - \min\varphi(s)\right] < \max I - \min I.$

Randomness is inherently imprecise

Theorem

For any stationary interval forecast *I* there is some path $\omega \in \Omega$ that is Martin-Löf random for φ_I , but never Martin-Löf random for any computable forecasting system φ with smaller imprecision:

 $\sup_{s\in\mathbb{S}} \left[\max\varphi(s) - \min\varphi(s)\right] < \max I - \min I.$

Theorem

For any non-vanishing interval forecast *I* there is some precise (and then necessarily) non-computable forecasting system φ such that for any path $\omega \in \Omega$:

 ω is Martin-Löf random for $\varphi_{l} \Leftrightarrow \omega$ is Martin-Löf random for φ

RANDOM PATHS ARE RARE

Lawful paths

Lawfulness

A path $\omega \in \Omega$ is called lawful if there is some algorithm that, given as input any situation *s* on the path ω , outputs a **restrictive** finite set *R*(*s*) of extensions of *s*, at least one of which is also on the path.

Lawful paths

Lawfulness

A path $\omega \in \Omega$ is called lawful if there is some algorithm that, given as input any situation *s* on the path ω , outputs a **restrictive** finite set *R*(*s*) of extensions of *s*, at least one of which is also on the path.

Theorem (Muchnik et al., 1998)

Any set containing only lawful paths is meagre—a countable union of nowhere dense sets.

Random paths are topologically rare

Proposition

If a path $\omega \in \Omega$ is **not lawful** then

$$\liminf_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \omega_k = 0 \text{ and } \limsup_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \omega_k = 1.$$

Theorem

Let *l* be any interval forecast that is strictly included in [0, 1], so min l > 0 or max l < 1.

Then the set of all paths that are Martin-Löf random for the stationary forecasting system φ_l is meagre.

THE END