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Introduction and Background

LMU Munich

one of largest German universities

≈ 50.000 students

Department of Statistics

Bachelor (Major and Minor) and Master programme in Statistics and
Data Science

PhD study
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Introduction and Background

The Department of Statistics at LMU

founded 1973/74 as Department for Statistics and Philosophy of
Science (Weichselberger, Stegmüller)

philosophy of Science: predecessor institute for Munich Center for
Mathematical Philosophy (Hartmann, Leitgeb, List)

major research focus of the department of statistics changing over
time

foundations of statistics (Ferschl, Schneeweiß, Weichselberger)
advanced statistical regression modelling (CRC, Fahrmeir, Tutz)
statistical machine learning and data science (Munich Center for
Machine Learning (MCML), Bischl, Kreuter)
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Introduction and Background

Kurt Weichselberger (1929-2016)

1

See also Augustin & Seising (2018, IJAR)

1Photo kindly provided by Weichselberger’s family
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Introduction and Background

Foundations of Statistics and Their Applications

https://www.foundstat.statistik.uni-muenchen.de/index.html

[Aug 16th, 2022]

Thomas Augustin

Hannah Blocher

Dominik Kreiß

Christoph Jansen

Gilbert Kiprotich

Malte Nalenz

Julian Rodemann

Georg Schollmeyer
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Introduction and Background

Some Selected Further Reading I: Classical Work

C. Manski (2003): Partial identification of probability distributions.
Springer, New York.

D. Ŕıos Insua and F. Ruggeri (eds.) (2000): Robust Bayesian
Analysis. Springer, Berlin.

P. Walley (1991): Statistical Reasoning with Imprecise Probabilities.
Chapman & Hall, London.

P. Walley (1996): Inferences from multinomial data: Learning about
a bag of marbles (with discussion). Journal of the Royal Statistical
Society, Series B, 58:3–34.

K. Weichselberger (2001): Elementare Grundbegriffe einer all-
gemeineren Wahrscheinlichkeitsrechnung I: Intervallwahr-
scheinlichkeit als umfassendes Konzept. Physica, Heidelberg.2

Biannual ISIPTA Proceedings: www.sipta.org[Aug16th,2022]

2in German; Elementary Foundations of a more General Calculus of Probability I:
Interval Probability as a Comprehensive Concept.
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Introduction and Background

Some Selected Further Reading II: Review Papers I

T. Augustin (2022): Statistics with imprecise probabilities: a short
survey. In: L. Aslett, F. Coolen, J. De Bock (eds.) Uncertainty in
Engineering: Introduction to Methods ans Applications. Springer,
Cham, pp. 67-79.

T. Augustin, G. Walter, F. Coolen, (2014): Statistical inference.
In: T. Augustin, F. Coolen, G. de Cooman, and M. Troffaes (eds.).
Introduction to Imprecise Probabilities. Wiley, Chichester,
pp. 135–188.

S. Bradley. Imprecise probabilities (2019): In Edward N. Zalta (ed.):
The Stanford Encyclopedia of Philosophy (Spring 2019 Edition).
Standford University.3

3
https://plato.stanford.edu/entries/imprecise-probabilities/[Aug16th,2022]
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Introduction and Background

Some Selected Further Reading III: Review Papers II

F. Molinari (2020): Microeconometrics with partial identification. In:
S. Durlauf, L. Hansen, J. Heckman and R. Matzkin (eds.) Handbook
of Econometrics, Vol. 7A, pp. 355–486.

B. Ristic, C. Gilliam, M. Byrne and A. Benavoli (2020): A tutorial on
uncertainty modeling for machine reasoning. Information Fusion
55:30–44.

For the statistical background, see, for instance,

B. Efron and T. Hastie (2016): Computer Age Statistical Inference.
Cambridge UP.
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Statistics in a Nutshell

Statistics

inference, reasoning, learning, modelling

here not: data production (mainly official statistics)
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Statistics in a Nutshell

Statistics as Inverted Probability

?

6

statisticsprobability

data generation process (DGP)

data
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Statistics in a Nutshell

Sample, Statistical Model

sample: random vector/matrix X = (X1, . . . ,Xn) on some space 𝒳
sample size n

joint probability measure p(⋅) as a model for the data generation
process DGP

capital letter X : random, describing potential observation;
small letter x : fixed value, standing for realization, concrete
observation

parametric modelling: p(⋅) is known up to some aspects Ð→
parameter 𝜗 (low dimensional, (“natural parametrization”)) with
values in some parameter space Θ

Thus inference on p(⋅) is described as inference on 𝜗

Basic ingredients of a statistical model: 𝒳 and (p𝜗(⋅))𝜗∈Θ
p𝜗(⋅) has density/probability mass function

f (x ⋃︀⋃︀𝜗)
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Statistics in a Nutshell

Typical Situations

This comprises most of the model classes considered in statistics, where
X1, . . . ,Xi , . . . ,Xn are describing

independently and identically distributed repetitions

independently and identically distributed repetitions split in pairs
Xi = (Y T

i ,ZT
i )T where p𝜗(⋅) is constructed from the modelled

conditional distributions of Yi given Zi : regression models with
covariates Zi and dependent variable Yi

longitudinally dependent observations: panel study, time series,
stochastic process in discrete time i
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Statistics in a Nutshell

Inference Tasks

testing hypotheses on 𝜗: decide between potentially underlying
DGPs

estimation of 𝜗: give a (vector of) values for a (multivariate)
characteristic of the underlying DGP

interval estimation: give range with some guaranteed coverage

decision making with data coming from the underlying DGP

predictive: characterize underlying distribution by making statements
on the properties of observations not yet seen
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Statistics in a Nutshell

Inference Paradigms

See, e.g., Barnett (19993, Wiley), Efron & Hastie (2016, Cambridge UP)
for textbooks, and http://bff-stat.org/ for recent developments
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Statistics in a Nutshell

Inference Paradigms

frequentist

likelihood

Bayesian

fiducial inference, also called Fisherian inference
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Statistics in a Nutshell

Frequentist Inference

search for a procedure that behaves well under infinitely many virtual
repetitions of the underlying “experiment”:

unknown, but fixed true parameter values
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Statistics in a Nutshell

Likelihood Inference

After having seen the data, reinterpret f (x ⋃︀⋃︀𝜗) as a function in 𝜗.

It expresses the likelihood/plausibility that x has been produced by
the model with 𝜗 as the truly underlying parameter
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Statistics in a Nutshell

Bayesian Inference

subjective probability: express YOUR uncertainty by a probability

assign a probability on the parameter: prior distribution
(density/probability mass function 𝜋(⋅))
update the prior in the light of the sample by Bayes rule: posterior
distribution (density/probability mass function 𝜋(⋅⋃︀x)

𝜋(𝜗⋃︀x) = f (x ⋃︀⋃︀𝜗) ⋅ 𝜋(𝜗)

Prior knowledge: 𝜋(𝜗)
sampling distribution f (x ⋃︀𝜗)

+observation x

Ô⇒ current knowledge 𝜋(𝜗⋃︀x): posterior
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Statistics in a Nutshell

Fiducial Inference, also called Fisherian Inference

“posteriors without priors”, relation to logical probability

“[. . . ] an attempt to eat the Bayesian omelette without breaking the
Bayesian eggs” (Savage 1961, Proc 4th Berkeley)

“Fiducial inference stands as R. A. Fisher’s one great failure.”
(Zabell, 1992, StatSc, p. 369)

intensive discussion inspiring quite productive rescue attempts,
including Dempster (1967, AnnMathStat), Seidenfeld (1979, Reidel),
Hampel (2006, Ahlswede et al.), Weichselberger (2009, ISIPTA Tut),
Martin & Liu (2015, Chapman & Hall).
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First Inquires on the Classical Approaches

First Inquires on the Classical Approaches

Are infinite repetitions stable over time?

How do we get the concrete form of the probabilities involved?

Do small differences in the modelling matter?

Can “wrong choices” be detected? If so what to do?
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First Inquires on the Classical Approaches

Is it a Good Idea to Bring in Subjective Information into
Statistical Inference?

?
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First Inquires on the Classical Approaches

General Aspects and some Caveats of Bayesian Inference

For n Ð→∞ full weight on the sample, irrespective of prior:
“asymptotic objectivity”. Asymptotically, the posterior concentrates
around the true parameter value.

For finite (not very large n), the parameters of the prior have to be
specified by the researcher, and this choice substantially influences the
result.
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First Inquires on the Classical Approaches

General Aspects and some Caveats of Bayesian Inference
(Continued)

Promises explicit incorporation of knowledge, e.g. “borrowing
strength” to discover effects more quickly.

“Bayesian methods are increasingly used in proof-of-concept stud-
ies. An important benefit of these methods is the potential to
use informative priors, thereby reducing sample size. This is par-
ticularly relevant for treatment arms where there is a substantial
amount of historical information such as placebo and active com-
parators.” (Mutsvar, Tytgat & [Ros.] Walley, 2016, Pharmaceut-
Statist, p. 28)

But is the knowledge truly precise enough?

How to express ignorance?

How to express valuable partial knowledge?

What to do under prior-data conflict? What would one hope for?
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First Inquires on the Classical Approaches

Excursus: Uniform Priors as Noninformative Priors I?

Consider a parameter 𝜗 ∈ (︀0; 1⌋︀, for instance the success probability in
i.i.d. Bernoulli trials.

If you do not have knowledge on 𝜗, you also do not have knowledge on 𝜗2.
If you knew something about 𝜗2, you would know something about⌋︂
𝜗2 = 𝜗.

If the prior distribution for 𝜃 (random quantity U) and the prior
distribution for 𝜃2 (random quantity U2) are both uniform, then
E(U) = E(U2) = 0.5, leading to the contradiction

1⇑12 = V(U) = E(U2) − (E(U))2 = 0.5 − 0.52 = 0.25
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First Inquires on the Classical Approaches

Excursus: Uniform Priors as Noninformative Priors I?

Indeed, for the distribution function of Y = U2 with uniformly U one
obtains

FY (y) = P(Y ≤ y) = P(U2 ≤ y)
4

= P(U ≤
⌈︂
(y)) = (︀u⌋︀

⌈︂
(y)

0 =
⌈︂
(y) .

Therefore, the density fy(y) has the form

fy(y) =
d FY (y)

d y
= d y0.5

d y
= 0.5y−0.5 = 0.5 1

⌋︂
y
,

in particular U2 is not uniformly distributed.

Classical solution (?): Jaffray priors

4suppU=[0,1]
Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 29 / 114
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First Inquires on the Classical Approaches

Prior-data conflict

What to do if prior information and (outlier-free) sample information are
conflicting (and the sample is too small to rule out the effect of the prior
distribution)?

“[...] if we can show that the observed data is surprising in light
of the sampling model and the prior, then we must be at least
suspicious about the validity of the inferences drawn [...].” (Evans
& Moshonov, 2006, BayesianAnal, p. 893)

How to be cautious within a classical probability?
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First Inquires on the Classical Approaches

How to be cautious within the classical probability calculus?

?

Conflicting information goes beyond variability, and thus can not be
captured by the variance or other characteristics of precise
probabilistic models.
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Imprecise Probability for Statistics! First Ideas

Imprecise Probability for Statistics?!

Unfortunate misnomer: actually IP claims to provide more precise
(better) models

uncertainty as a multidimensional concept

In general, often somewhat reserved reactions in the statistical
community, although many researchers shaping the theory (Walley,
Weichselberger, Seidenfeld, Dempster (and others)) are genuine
statisticians

EVERITT
LANDAU
LEESE
STAHL

C
luster A

nalysis  5th Edition

Cluster Analysis  5th Edition
Brian S. Everitt, Sabine Landau, Morven Leese and Daniel Stahl
King’s College London, UK 

Cluster analysis comprises a range of methods for classifying multivariate 
data into subgroups. By organizing multivariate data into such subgroups, 
clustering can help reveal the characteristics of any structure or patterns 
present. These techniques have proven useful in a wide range of areas 
such as medicine, psychology, market research and bioinformatics.  

This 5th edition of the highly successful Cluster Analysis includes coverage 
of the latest developments in the field and a new chapter dealing with finite 
mixture models for structured data. 

Real life examples are used throughout to demonstrate the application 
of the theory, and figures are used extensively to illustrate graphical 
techniques. The book is comprehensive yet relatively non-mathematical, 
focusing on the practical aspects of cluster analysis. 

Key Features:

•  Presents a comprehensive guide to clustering techniques, with focus 
on the practical aspects of cluster analysis.

•  Provides a thorough revision of the fourth edition, including new 
developments in clustering longitudinal data and examples from 
bioinformatics and gene studies.

•  Updates the chapter on mixture models to include recent developments 
and presents a new chapter on mixture modelling for structured data.

Practitioners and researchers working in cluster analysis and data analysis 
will benefit from this book.
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Imprecise Probability for Statistics! First Ideas

Imprecise Probability for Statistics! Fundamental Concepts

Here: build simply on a very intuitive understanding

sets of traditional probability models (credal sets) “⇐⇒”
interval-valued probability P(A) = (︀L(A),U(A)⌋︀ of events A (, or
more generally expectations)5

Take the set / the intervals as a basic entity! (No mixing, higher
order distributions!)

quality of information: “size of set”, width of interval

traditional probability as the extreme case of perfect probabilistic
information, real number, set with a single element
P(A)=[0;1] for all nontrivial events – set of all probability measures:
complete ignorance, full ambiguity

5L(⋅) and U(⋅) are non-additive set-functions, often called capacities.
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Imprecise Probability for Statistics! First Ideas

First Ideas I: Directly Based on Precise Probabilitic Models

different experts (with different precise probabilities)

assigning probability only to certain events (de Finitti’s fundamental
theorem, cp. yesterday)

handling of different granularities: unique extensions from any
set-system to IP on the underlying measurable space

indivisible evidence: high probability for A ∪B can not be split
between disjoint events A and B (Ellsberg, medical expert systems,
coarsened data)
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Imprecise Probability for Statistics! First Ideas

First Ideas II: Natural Applications

direct modelling of partial knowledge: intervals of probabilities or
expectations

ordinal probabilities: p(A) ≤ p(B) ≤ p(C)...
approximately true models Ð→ neighborhood models, see below

unobserved heterogeneity (slightly changing distribution for different
individuals due to unobservable individual characteristics (e.g. genetic
disposition)
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Imprecise Probability for Statistics! First Ideas

First Ideas III: Interval Ordering

P1(A) ⊇ P2(A) , for all A

P1(⋅) is more cautious than P2(⋅).
learning under homogenous information

description of conflicting information: intervals get wider

continuum of uniform distributions: P(A) = P(B) = P(C) . . .
distinction between negative symmetry (do not know any asymmetry)
and positive symmetry (knowledge that symmetry is produced)

modelling complete ignorance P(A) = (︀0,1⌋︀ for all nontrivial events A

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 37 / 114



Imprecise Probability for Statistics! First Ideas

Quality of Information

“Let’s Be Imprecise in Order to Be Precise
(About What We Don’t Know)”

Title of Gong & Meng (2021, StatSc (Rejoin-
der), p. 210)

Ruobin Gong

Xiao-Li Meng6

6
taken from https://ruobingong.github.io and https://statistics.fas.harvard.edu/people/xiao-li-meng [Aug

16th, 2002]
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Imprecise Probability for Statistics! First Ideas

Several Updating /Conditioning Rules

In general quite an complex issue (see also yesterday, Blackwell)

standard way to proceed in IP: generalized Bayes rule, conditioning
element by element (robust Bayes, justified by generalized coherence
axioms: Walley (1991, Chapter 6))

recent discussion in the light of typical statistical settings: Gong &
Meng (2021, StatSc), Augustin & Schollmeyer (ibid.)
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Imprecise Sampling Models
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

Do small differences in models matter at all?

Naturally, every abstraction yields some kind of imprecision.

Do small differences in models matter at all?
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

The mantra of statistical modelling

Box & Draper (1987, Empirical Model Building and Response Surfaces, p. 424)

“Essentially, all models are wrong,

but some of them are useful”,
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

Do small differences in models matter at all?

Naturally, every abstraction yields some kind of imprecision.

Do small differences in models matter at all?

Are there probability models with

Model 1 “very similar” Model 2

BUT

Conclusions(Model 1) “quite different” Conclusions(Model 2)?
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

Assumptions may matter!

Figure: A “regular, bell-shaped” density
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

Assumptions may matter!
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Figure: Densities of the Normal(0,1) and the Cauchy(0,0.79) distribution.
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

Assumptions may matter!

Consider sample mean X .

if X1, . . . ,Xn ∼ N(𝜇,1) (normally distributed), then

X̄ ∼ N(𝜇, 1
n
)

Learning from the sample, with increasing sample size variance of X
decreases.

if X1, . . . ,Xn ∼ 𝒞(𝜇,1) (Cauchy-distributed), then

X ∼ C(𝜇,1)

Distribution does not depend on n, no learning via sample mean
possible
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

Robustness in testing: a motivating example

Consider the simplest testing situation:

X1, . . . ,Xn i.i.d. sample, underlying normal distribution 𝒩(𝜇,𝜎0) with
𝜎0 known and fixed in advance.

Test the hypotheses

H0 ∶ 𝜇 = 0 versus H1 ∶ 𝜇 ⇑= 0

at a given level of significance 𝛼 (Here 𝛼 = 0.05.)
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

Robustness in testing: a motivating example

standard test (indeed uniformly most powerful under all unbiased
tests respecting the level of significance)

test statistic

T =
1
n ∑

n
i=1Xi

𝜎0

⌋︂
n

reject H0 iff
⋃︀ T ⋃︀> z1−𝛼

2
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Imprecise Sampling Models Robustness Issues in Frequentist Estimation and Testing

Robustness in testing: a motivating example

Simple simulation to study this test:

a) Simulate samples of size n from 𝒩(0, 𝜎2
0) (with 𝜎2

0 = 1).
(Corresponds perfectly to H0.)

b) Inner loop with say hundred repetitions: Calculate ⋃︀ T ⋃︀ and count
how often H0 is rejected. Yields counter C.

c) Outer loop with say again hundred repetitions: Look at the empirical
distribution of C and corresponding summary statistics.

What changes if 𝒩(0,1) is replaced by 𝒞(0,0.79)?
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Imprecise Sampling Models Neighborhood Models
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Imprecise Sampling Models Neighborhood Models

Insure yourself against non-robustness: neighborhood
models

General issue: many optimal procedures may show very bad behavior
under minimal deviations from the ideal model.

Give up some efficiency in the ideal model for being protected
(compare buying an insurance policy).

formalization via neigborhood models7

instead of p𝜗(⋅) use a model expressing “approximately p𝜗(⋅),” i.e.
consider the credal set of all distributions “close to p𝜗(⋅)”

7Huber, P.J. and Strassen, V. (1973). Minimax tests and the Neyman-Pearson
lemma for capacities. Ann. Statist. 1:251–263
Montes, I., Miranda, E. and Destercke, S. (2020a). Unifying neighbourhood and
distortion models: Part I: new results on old models. Int. J. Gen. Syst. 49:602–635.
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Imprecise Sampling Models Neighborhood Models

Neighborhood models via distortion models

Instead of p𝜗(⋅) use a model expressing “approximately p𝜗(⋅),” i.e.
consider the credal set of all distributions “close to p𝜗(⋅)”
Formalization via various probability metrics

Many models can be expressed as an F-probability8

P𝜗(⋅) = (︀L𝜗(⋅),U𝜗(⋅)⌋︀ where for a suitable function g ∶ (︀0,1⌋︀ → (︀0,1⌋︀
and arbitrary events A the lower interval limit L𝜗(A) takes the form

L𝜗(A) = g(p𝜗(A)) . (1)

Then g(⋅) is called distortion function and p𝜗(⋅) central distribution.9

8Small exercise: Show that the fact that P(⋅) from (1) is an F-probability implies
g(t) ≤ t, for all t ∈ (︀0,1⌋︀ .

9For the 𝜖−contamination model take g(t) = (1 − 𝜖) ⋅ t.
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Imprecise Sampling Models Neighborhood Models

Brief excursus: ideas based on neighborhood models in
machine learning

neighbourhood models help to avoid overfitting: lower entropy
(Abellan & Moral (2003, IJUFKBS), Strobl (2005, ISIPTA))

extended, for instance, in Fink (2018, Diss LMU), Fink (2018,
Imptree:CRAN)

abstain from predictions when the uncertainty is too high

better interpretability without loosing much predictive power?

summarize complex ensemble by easy to interpret tree with soft
boundaries? Nalenz & Augustin (2021, AIStat)
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Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Table of contents

1 Introduction and Background

2 Statistics in a Nutshell

3 First Inquires on the Classical Approaches

4 Imprecise Probability for Statistics! First Ideas

5 Imprecise Sampling Models
Robustness Issues in Frequentist Estimation and Testing
Neighborhood Models

6 Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of
Conjugacy
Generalized Bayesian Inference

7 Selected Aspects of Data Imprecision
Big Data Uncertainty and Non-/Partial Identfiability
An Ongoing Case Study: Yet Undecided Voters

8 Concluding Remarks

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 56 / 114



Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Bayes postulate (not decision theoretic)

After having observed the sample, the posterior distribution contains the
full information, i.e., it describes the knowledge about the unknown
parameter completely.
All statistical analyzes must rely exclusively on the posterior; in particular,
the construction of

Bayesian point estimates: MPD estimators (Maximum Posterior
Density estimators)

Bayesian interval estimates: HPD intervals (Highest posterior density
intervals)

Bayes tests.

Furthermore, the following Updating Principle is used: When drawing
a further sample, the posterior distribution is used as the new prior
distribution. In this sense, conditional Bayes inference is often
referred to as “updating the prior”.
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Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Bayes learning: fundamental scheme

Prior knowledge: 𝜋(𝜗)
sampling distribution f (x ⋃︀𝜗)
+observation x

Ô⇒ current knowledge 𝜋(𝜗⋃︀x): posterior
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Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Bayes learning: fundamental scheme

Think of the data coming in sequentially in batches at times t1, t2, . . ..
(“Online learning”)

priort1
data1Ð→ posteriort1 = priort2

data2Ð→ posteriort2 = priort3 . . .

That can be done in a particularly convenient way when prior and
posterior are guaranteed to be from the same parametric family of
distributions. The distributions describing the sampling model and the
prior are then called conjugated to each other.
Then, with 𝛾 the parameter describing the prior,

𝛾t1
data1Ð→ 𝛾t2

data2Ð→ 𝛾3 . . .
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Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Examples for conjugacy between prior and sampling
distribution

normal-normal for the inference on the mean of a normal distribution

beta-binomial model for inference on binary samples

Dirichlet-multinomial model for inference on categorical data

gamma-Poisson model for inference on count data

. . .
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Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Conjugacy in canonical exponential families

See, e.g., Bernardo & Smith (2000, pp. 202 and 272f) and Quaeghebeur
& de Cooman (2005, ISIPTA) for the first extension to IP.

For the moment only special case: real-valued, canonical parameter 𝜗

n i.i.d. observations: sample x = (x1, x2, . . . , xn)T

sampling model canonical exponential family, sufficient statistic 𝜏(x),
density/probability function

f (x⋃︀𝜗) ∝ exp (𝜗𝜏(x) − nb(𝜗)) , (2)

conjugacy whenever prior has the form

𝜋(𝜗⋃︀n(0), y (0)) ∝ exp (n(0) [︀y (0) ⋅ 𝜗 − b(𝜗)⌉︀ ) (3)
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Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Conjugacy in canonical exponential families (continued)

prior with parameter (to be chosen by the researcher!)
(y (0)
⧹︀

prior guess

, n(0))
⧹︀

prior strength

virtual sample size

posterior with parameter (y (n),n(n)) where

y (n) = n(0)

n(0) + n
⋅ y (0) + n

n(0) + n
⋅ 𝜏(x)

n
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

weighted mean

, n(n) = n(0) + n .
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

overall sample size

(4)

n(n) is independent of the concrete observation of the sample

If n(0) had been larger, y (0) would have received more weight.

If n had been larger, the observed value 𝜏(x)
n would have received

more weight.
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Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Conjugacy in canonical exponential families (continued)

prior with parameter (to be chosen by the researcher!)
(y (0)
⧹︀

prior guess

, n(0))
⧹︀

prior strength

virtual sample size
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(4)

n(n) is independent of the concrete observation of the sample

If n(0) had been larger, y (0) would have received more weight.

If n had been larger, the observed value 𝜏(x)
n would have received

more weight.
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Example: normal-normal model

Inference on 𝜇, with known variance 𝜎2
0

f (x ⋃︀𝜇,𝜎2
0) ∝ exp{ 𝜇

𝜎2
0

n

∑
i=1

xi −
n𝜇2

2𝜎2
0

}.

Thus, 𝜗 = 𝜇
𝜎2
0
, b(𝜗) = 𝜇2

2𝜎2
0
, 𝜏(x) = ∑n

i=1 xi , and for the conjugate prior

𝜋( 𝜇

𝜎2
0

⋁︀n(0), y (0)) ∝ exp{n(0)(∐︀y (0), 𝜇

𝜎2
0

̃︀ − 𝜇2

2𝜎2
0

)} ,

and, transformed to the parameter of interest 𝜇,

𝜋 (𝜇⋃︀n(0), y (0)) ∝ 1

𝜎2
0

exp{ − n(0)

2𝜎2
0

(𝜇 − y (0))2}d𝜇 , i.e.,

𝜇 ∼ 𝒩(y (0), 𝜎2
0

n(0)
)
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The parameters of the posterior distribution are

y (n) = E(︀𝜇⋃︀x⌋︀ = n(0)

n(0) + n
⋅ y (0) + n

n(0) + n
⋅ x̄ (5)

𝜎2
0

n(n)
= V(𝜇⋃︀x) = 𝜎2

0

n(0) + n
. (6)

Indeed, the posterior expectation of 𝜇 is a weighted average of the
prior expectation y (0) and the sample mean x̄ .

The updating decreases the variance by the factor n(0)⇑(n(0) + n).
The variance is the larger, the larger 𝜎2

0, i.e. the larger the variability
of the sample.
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General aspects and some caveats

For n Ð→∞ full weight on the sample, irrespective of prior:
“asymptotic objectivity”, holds more general under mild regularity
conditions. Posterior asymptotically concentrates around the true
parameter value.

For finite (not very large n), the parameters of the prior have to be
specified by the researcher, and this choice substantially influences the
result
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General aspects and some caveats (Continued)

Recall the discussion above

Promises explicit incorporation of knowledge, e.g. “borrowing
strength” to discover effects more quickly.

“Bayesian methods are increasingly used in proof-of-concept stud-
ies. An important benefit of these methods is the potential to
use informative priors, thereby reducing sample size. This is par-
ticularly relevant for treatment arms where there is a substantial
amount of historical information such as placebo and active com-
parators.” (Mutsvar, Tytgat & [Ros.] Walley, 2016, Pharmaceut-
Statist, p. 28)

But is the knowledge truly precise enough?

What to do under ignorance?

How to express valuable partial knowledge?

insensitivity towards prior-data conflict (see below)
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Prior-data conflict

Recall

y (n) = n(0)
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⋅ 𝜏(x)

n
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weighted mean
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overall sample size

Example: Let in the normal-normal model n(0) = 5 and n = 20, and
consider the following three situations:

y (0)quad 𝜏(x)
n

a) −0.1 0.025
b) −1 0.25
c) −10 2.5

In a), the prior guess for the mean and sample mean are very close to each
other, while in c) there is a big discrepancy between what was anticipated
to occur and what was de facto observed. Assuming that no outliers have
occurred, there is a severe prior-data conflict. (b) is somewhat in
between.)
What would one expect from a suitable modelling procedure?
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weighted mean

, n(n) = n(0) + n .
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

overall sample size

Example: Let in the normal-normal model n(0) = 5 and n = 20, and
consider the following three situations:

y (0)quad 𝜏(x)
n

a) −0.1 0.025
b) −1 0.25
c) −10 2.5

In a), the prior guess for the mean and sample mean are very close to each
other, while in c) there is a big discrepancy between what was anticipated
to occur and what was de facto observed. Assuming that no outliers have
occurred, there is a severe prior-data conflict. (b) is somewhat in
between.)
What would one expect from a suitable modelling procedure?Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 67 / 114
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Classical Bayes Learning: Brief Repetition and the Concept of

Conjugacy

Prior-data conflict

What to do if prior information and (outlier-free) sample information are
conflicting (and the sample is too small to rule out the effect of the prior) ?

“[...] if we can show that the observed data is surprising in light
of the sampling model and the prior, then we must be at least
suspicious about the validity of the inferences drawn [...].” (Evans
& Moshonov, 2006, BayesianAnal, p. 893)
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Conjugacy

Prior-data conflict

In all three situations of the example, one obtains the same posterior mean

y (n) = 0

and also the same variance, since

n(n) ≡ n(0) + n = 25 ,

and thus the same distribution.
Conflicting information goes beyond variability, and thus can not be
captured by the variance or other characteristics of precise probabilistic
models.
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Powerful models

credal prior: set of prior distributions representing partial knowledge

set of expert opinions as credal prior

ordinal probabilities

indivisible evidence

parametrically constructed: utilize the parametric models just
discussed with interval-valued parameter components (set of means,
set of variances etc.) bounds on densities or distribution functions

neighborhood models, e.g. distorted probabilities
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Posterior loss versus prior risk

In the general framework developed later, it turns out that there is
typically no counterpart to the main theorem of Bayesian decision theory.
One has to decide whether to take

the conditional perspective based on (some notion of) generalized
posterior loss optimality

the strategic perspective looking for decision functions minimizing
(some notion of) generalized expected prior risk
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For the moment: conditional perspective

credal prior: F-probability Π or credal setℳ,

after having observed x update it to obtain the credal posterior Πx or
credal setℳx

take the credal posterior as the basis of all inferences and decision
procedures (generalized Bayes postulate, compare with Remark 2.52)

decision theoretic criteria (E-Admissibility, MaxEMin, ldots) directly
applicable
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Inference with credal posterior, some properties

natural ordering with respect to “⊆”:

ℳ(1) ⊆ℳ(2) ⇐⇒ℳ(1)
x ⊆ℳ(2)

x

“asymptotic objectivity” remains: (By general theory, it is, under
regularity conditions, valid for all prior probabilities, and thus, in
particular, for all elements of calM.)

a closer look at extensions of the conjugated models in exponential
families

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 74 / 114



Bayesian Inference under Credal Sets Generalized Bayesian Inference

Inference with credal posterior, some properties

natural ordering with respect to “⊆”:

ℳ(1) ⊆ℳ(2) ⇐⇒ℳ(1)
x ⊆ℳ(2)

x

“asymptotic objectivity” remains: (By general theory, it is, under
regularity conditions, valid for all prior probabilities, and thus, in
particular, for all elements of calM.)

a closer look at extensions of the conjugated models in exponential
families

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 74 / 114



Bayesian Inference under Credal Sets Generalized Bayesian Inference

Inference with credal posterior, some properties

natural ordering with respect to “⊆”:

ℳ(1) ⊆ℳ(2) ⇐⇒ℳ(1)
x ⊆ℳ(2)

x

“asymptotic objectivity” remains: (By general theory, it is, under
regularity conditions, valid for all prior probabilities, and thus, in
particular, for all elements of calM.)

a closer look at extensions of the conjugated models in exponential
families

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 74 / 114



Bayesian Inference under Credal Sets Generalized Bayesian Inference

Extensions of the conjugated models in exponential families

precise sampling distribution from canonical exponential family in the
form (2)

credal prior described by parameter set IΠ(0) ⊆ 𝒴(0) ×𝒩 (0), with 𝒴(0)
and 𝒩 (0) sets of y (0)− and n(0)−values in the sense of (3) (called
conjugated credal priors here)

applying GBR yields the credal posterior as a set of conjugated
distributions described by10

IΠ(n) ∶= {(y (n),n(n)) ⨄︀ ∃(y (0),n(0)) ∶ y (n),n(n) obey to (4)}

10(4) was:

y (n) = n(0)

n(0) + n
⋅ y (0) + n

n(0) + n
⋅ 𝜏(x)

n
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

weighted mean

, n(n) = n(0) + n .
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

overall sample size
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Near-ignorance models

These models allow for the formulation of near-ignorance models on the
parameter space, i.e. the specification of a prior credal sets ℳ̈ of
probabilities on Θ, 𝜎(Θ) with

inf
𝜋∈ℳ̈

𝜋(Q) = 0 sup
𝜋∈ℳ̈

𝜋(Q) = 1 , Q ∈ 𝒬 ,

with 𝒬 containing the “standard events of interest”11.

11Taking 𝒬 = 𝜎(Θ) ∖ {∅} would lead to a entirely vacuous posterior P(Q ⋃︀x) = (︀0,1⌋︀
for all Q ∈ 𝒬.
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Work on near-ignorance models

most prominent is the imprecise Dirichlet model (IDM) Walley, 1996,
JRSSB for categorical inference under prior-near ignorance

for general exponential families, one-parametric: Benavoli & Zaffalon
(2012, JStatPlanInf), multivariate form Benavoli & Zaffalon (2014,
Statistics)

Gaussian processes: Mangili (2015, ISIPTA; 2017, IntJApproxReason)

for recent machine learning applications, see, in the case of the IDM,
Utkin (2019, Neurocomputing), Utkin (2020, ExpSysAppl),
Moral-Garcia et al (2020 ExpSysAppl), for the multivariate normal
model, Carranza Alarcon & Destecke (2021, Pattern Recognition),
and for the imprecise Gaussian processes, Rodemann (2021, MSc
LMU), Rodemann & Augustin (2021, IUKM)
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Convenient special case: interval-valued parameters

interval-valued prior location parameter

[︀y (0), ȳ (0)⌉︀

and/or

interval-valued prior strength / number of virtual observations

[︀n(0), n̄(0)⌉︀

Shows also attractive behavior under prior data conflict
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and/or

interval-valued prior strength / number of virtual observations

[︀n(0), n̄(0)⌉︀

Shows also attractive behavior under prior data conflict

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 78 / 114



Bayesian Inference under Credal Sets Generalized Bayesian Inference

Prior-data conflict

Consider an i.i.d. sample from a normal distribution and conjugated credal
priors based on IΠ(0) = 𝒴(0) ×𝒩 (0) with 𝒴(0) = (︀y (0), ȳ (0)⌋︀ and
𝒩 (0) = (︀n(0), n̄(0)⌋︀. For the credal posterior based on IΠ(n) and with

y (n) ∶= inf
(y(n),n(n))∈IΠ(0)

y (n) and y (n) ∶= sup
(y(n),n(n))∈IΠ(0)

y (n)

it holds that

y (n) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

n(0)y (0) + nx̄
n(0) + n

x̄ ≥ y (0)

n(0)y (0) + nx̄
n(0) + n

x̄ < y (0)
, y (n) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

n(0)y (0) + nx̄
n(0) + n

x̄ ≤ y (0)

n(0)y (0) + nx̄
n(0) + n

x̄ > y (0)
.
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Prior-data conflict

In particular, for the “posterior imprecision in the means”

y (n) − y (n) =
n(0)(y (0) − y (0))

n(0) + n
+ inf

y(0)∈𝒴(0)
⋃︀x̄ − y (0)⋃︀

)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
prior-data conflict

n (n(0) − n(0))
(n(0) + n)(n(0) + n)

.
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Prior-data conflict
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Figure: Taken from Walter & Augustin (2009, JStatThPrac p. 268)
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Prior-data conflict

0 20 40 60 80 100

0
2

4
6

8
10

n

y(0) = 3.5, n(0) = 5

0 20 40 60 80 100

0
2

4
6

8
10

n

y(0) D  [3;4], n(0) = 5

0 20 40 60 80

0
2

4
6

8
10

n

y(0) D  [3;4], n(0) D  [1;25

0 20 40 60 80 100

0
2

4
6

8
10

n

y(0) = 3.5, n(0) = 5

0 20 40 60 80 100

0
2

4
6

8
10

n

y(0) D  [3;4], n(0) = 5

0 20 40 60 80

0
2

4
6

8
10

n

y(0) D  [3;4], n(0) D  [1;25

Figure: Taken from Walter & Augustin (2009, JStatThPrac p. 268)

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 82 / 114



Selected Aspects of Data Imprecision

Table of contents

1 Introduction and Background

2 Statistics in a Nutshell

3 First Inquires on the Classical Approaches

4 Imprecise Probability for Statistics! First Ideas

5 Imprecise Sampling Models
Robustness Issues in Frequentist Estimation and Testing
Neighborhood Models

6 Bayesian Inference under Credal Sets
Classical Bayes Learning: Brief Repetition and the Concept of
Conjugacy
Generalized Bayesian Inference

7 Selected Aspects of Data Imprecision
Big Data Uncertainty and Non-/Partial Identfiability
An Ongoing Case Study: Yet Undecided Voters

8 Concluding Remarks

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 83 / 114



Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

Classical View Point: Sampling Uncertainty

use of probability theory

quantifies the error made by certain inference procedures

tests
point and interval estimators

decreases with increasing sample size n

goes to zero for n →∞
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Complex Relationships between Variables

Y effects� � X

? ?

6

data - inference � data
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Typical examples: Measurement Error

Quite often the relationship between theoretically formulated variables and
the observed data is rather complex, too.

Error-prone measurements of true quantities

♢ error in technical devices
♢ indirect measurement
♢ response effects
♢ use of aggregated quantities, averaged values, imputation, rough

estimates etc.
♢ anonymization of data by deliberate contamination

Measured indicators of complex constructs; latent variables

♢ long term quantities: long term protein intake, long term blood pressure
♢ permanent income
♢ importance of a patent
♢ extent of motivation, degree of costumer satisfaction
♢ severity of malnutrition
♢ . . .

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 86 / 114



Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

Big Data Uncertainty

Quite often the relationship between theoretically formulated variables and
the observed data is rather complex, too.

measurement error and misclassification (including operationalization
of complex constructs, anonymized data)

rounding and heaping

omitted variables

coarsening

censoring

missing data (including missingness by design: treatment evaluation,
statistical matching)

big data uncertainty: such uncertainty does not diminish with increasing
sample size

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 87 / 114



Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

Big Data Uncertainty

Quite often the relationship between theoretically formulated variables and
the observed data is rather complex, too.

measurement error and misclassification (including operationalization
of complex constructs, anonymized data)

rounding and heaping

omitted variables

coarsening

censoring

missing data (including missingness by design: treatment evaluation,
statistical matching)

big data uncertainty: such uncertainty does not diminish with increasing
sample size

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 87 / 114



Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

Big Data Uncertainty

Quite often the relationship between theoretically formulated variables and
the observed data is rather complex, too.

measurement error and misclassification (including operationalization
of complex constructs, anonymized data)

rounding and heaping

omitted variables

coarsening

censoring

missing data (including missingness by design: treatment evaluation,
statistical matching)

big data uncertainty: such uncertainty does not diminish with increasing
sample size

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 87 / 114



Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

The two-layers perspective

ideal Y � effects � ideal X

? ?

? ?

6

data - inference � data

deficiency model deficiency model

observable Y observable X
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What to do?

Make assumptions to be able

to justify ignoring this uncertainty or

to correct for it, etc. by integrating its effects out

for instance:

missing / coarsening at random (MAR/CAR), noninformative
censorship,
measurement error models

“classical model of testing theory”: Measurement error model must
be known precisely

– type of error, especially assumptions on (conditional) independence

– independence of true value
– independence of other covariates
– independence of other measurements

– type of error distribution
– moments of error distribution

validation studies typically not available
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Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

Assumptions as information

“There is always a trade-off between assumptions and data –
both bring information. With better data, fewer assumptions are
needed.”

Rubin (2005, JASA, here p. 324); compare also the talk by Elisabeth
Stuart in the last Institutskolloquium
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Quote taken from Rubin in more detail

“Nothing is wrong with making assumptions; causal inference is
impossible without making assumptions, and they are the strands
that link statistics to science. It is the scientific quality of those
assumptions, not their existence, that is critical. There is always
a trade-off between assumptions and data – both bring informa-
tion. With better data, fewer assumptions are needed. But in the
causal inference setting, assumptions are always needed, and it is
imperative that they be explicated and justified. One reason for
providing this detail is so that readers can understand the basis of
conclusions. A related reason is that such understanding should
lead to scrutiny of the assumptions, investigation of them, and,
ideally, improvements. Sadly, this stating of assumptions is typi-
cally absent in many analyses purporting to be causal and replaced
by a statement of what computer programs were run, which I re-
gard as entirely inadequate scientifically.”

Rubin (2005, JASA, here p. 324)
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Missing data

response Y1,Y2, . . . ,Yn, covariates X1,X2, . . . ,Xn

for the moment, missingness in Y variable only

missingness/observability indicator R ∈ {0,1}

missingness complete at random (MCAR): R independent of X and Y

missingness at random (MAR): R may dependent on X , but is
independent of Y

missingness not at random (NMAR): else

many statistical results and techniques rely on MAR (or MCAR)

for instance multiple imputation or the EM-algorithm
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Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

How to test between MAR and MNAR?

Motivating simulation example

Simplification for illustration: no covariates, thus MAR = MCAR
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Motivating simulation example

LEERZEILE

uniform distribution + NMAR normal distribution + MCAR
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Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

How to test between MAR and MNAR?

No chance to distinguish between MAR and MNAR on empirical grounds
only.
To every MAR situation there are infinitely many models that lead to the
same observable distribution.

P(Y = y ⋃︀R = 1) = P(R = 1⋃︀Y = y) ⋅ P(Y = y)
P(R = 1)
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Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

Recap: traditional handling of big data uncertainty

What to do? Make assumptions to be able

to ignore this uncertainty

to correct for it, etc. by integrating its effects out

for instance:

missing / coarsening at random (MAR/CAR), noninformative
censorship,
measurement error models

But these assumptions

are assumptions on the relationships of unobservable quantities,

are thus by themselves not testable, different models lead to the same
data,

and thus need indispensably external justification by background
domain knowledge.
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Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

Manski’s Law of Decreasing Credibility

Credibility ?
“The credibility of inference decreases
with the strength of the assumptions
maintained.” (Manski (2003, p. 1))

Charles Manski12

12
http://faculty.wcas.northwestern.edu/~cfm754/; [August 16th, 2022]
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Manski’s Law of Decreasing Credibility

Credibility ?
“The credibility of inference decreases
with the strength of the assumptions
maintained.” (Manski (2003, p. 1))

partial identification: Set of all
models compatible with the data and
tenable assumptions. Charles Manski13

13
http://faculty.wcas.northwestern.edu/~cfm754/; [August 16th, 2022]
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Selected Aspects of Data Imprecision Big Data Uncertainty and Non-/Partial Identfiability

Reliable inference instead of overprecision!!

Consequences to be drawn from the Law of Decreasing Credibility:

adding untenable assumptions to produce precise solution may
destroy credibility of statistical analysis, and therefore its relevance for
the subject matter questions.

make realistic assumptions and consider the set of all models that are
compatible with the data and these assumptions (and then add
successively additional assumptions, if desirable)

the results may be imprecise, but are more reliable

the extent of imprecision is related to data quality!

as a welcome by-product: clarification of the implication of certain
assumptions

often still sufficient to answer subjective matter question

“weak information” may be powerful in refining results
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Partial identification

Classical setting:

Big data uncertainty Ð→ no identification

OR

Big data uncertainty
strong assumptionsÐ→ single model

Now

Big data uncertainty Ð→ partial identification

Big data uncertainty Ð→ set of models
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Selected Aspects of Data Imprecision An Ongoing Case Study: Yet Undecided Voters

Election Forecasting with Yet Undecided Voters

Project with the polling institute Civey, together with Dominik Kreiss

pre-election polling data for the 2021 German federal election

new questionnaire design: explicit collection of the consideration sets
(Oscarsson & Rosema (2019, Elect.Stud)) of yet undecided voters
(“Between which parties are you undecided?”)

valuable information far beyond “don’t know”:

typically indecisiveness only between (very) few parties
precise vote for all coalitions containing parties in the voter’s
consideration set

Kreiss & Augustin (2021, ArXiv) and the work cited therein
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Selected Aspects of Data Imprecision An Ongoing Case Study: Yet Undecided Voters

S set of parties standing for election
two levels of (generic) response variables

Y: consideration set, set l of preferred parties, observable
Y : final choice, party ℓ ∈ l, not observable
covariates X , realizations x

point estimator for percentage of votes a set A of parties achieves

⧹︂p(Y ∈ A) = ∑
(ℓ, l, x) ∈

A × 𝒫(S) × 𝒳

p(Y = ℓ ⋃︀Y = l,X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

latent transition
model

⋅ ⧹︂p(Y = l ⋃︀ X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

from data

⋅ ⧹︂p(X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
from data,
sampling
weights

Structure of the equation

p(Y = ℓ) = ∑x p(Y ∈ ℓ⋃︀X = x) ⋅ p(X = x)
p(Y ∈ A) = ∑x ,ℓ p(Y ∈ ℓ⋃︀X = x) ⋅ p(X = x)
Now condition on a further variable, Z with values z say (later set
Z =Y with values z = l)
p(Y ∈ A) = ∑x ,ℓ,z p(Y ∈ ℓ⋃︀Z = z ,X = x) ⋅ p(Z = z ⋃︀X = x) ⋅ p(X = x)
go over to “hats” to express estimation

results depend strongly on the unknown transition model

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S) ,

which is, however, unidentifiable without further assumptions.
For every l and x the transition model specifies a probability
distribution p(l,x) on (l,𝒫(l)).
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⋅ ⧹︂p(Y = l ⋃︀ X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
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⋅ ⧹︂p(X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
from data,
sampling
weights

Structure of the equation

p(Y = ℓ) = ∑x p(Y ∈ ℓ⋃︀X = x) ⋅ p(X = x)
p(Y ∈ A) = ∑x ,ℓ p(Y ∈ ℓ⋃︀X = x) ⋅ p(X = x)
Now condition on a further variable, Z with values z say (later set
Z =Y with values z = l)
p(Y ∈ A) = ∑x ,ℓ,z p(Y ∈ ℓ⋃︀Z = z ,X = x) ⋅ p(Z = z ⋃︀X = x) ⋅ p(X = x)
go over to “hats” to express estimation

results depend strongly on the unknown transition model

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S) ,

which is, however, unidentifiable without further assumptions.
For every l and x the transition model specifies a probability
distribution p(l,x) on (l,𝒫(l)).

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 103 / 114



Selected Aspects of Data Imprecision An Ongoing Case Study: Yet Undecided Voters

S set of parties standing for election
two levels of (generic) response variables

Y: consideration set, set l of preferred parties, observable
Y : final choice, party ℓ ∈ l, not observable
covariates X , realizations x

point estimator for percentage of votes a set A of parties achieves

⧹︂p(Y ∈ A) = ∑
(ℓ, l, x) ∈

A × 𝒫(S) × 𝒳

p(Y = ℓ ⋃︀Y = l,X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

latent transition
model

⋅ ⧹︂p(Y = l ⋃︀ X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂

from data

⋅ ⧹︂p(X = x)
)︁⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂]︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂⌊︂)︂
from data,
sampling
weights

Structure of the equation

p(Y = ℓ) = ∑x p(Y ∈ ℓ⋃︀X = x) ⋅ p(X = x)
p(Y ∈ A) = ∑x ,ℓ p(Y ∈ ℓ⋃︀X = x) ⋅ p(X = x)
Now condition on a further variable, Z with values z say (later set
Z =Y with values z = l)
p(Y ∈ A) = ∑x ,ℓ,z p(Y ∈ ℓ⋃︀Z = z ,X = x) ⋅ p(Z = z ⋃︀X = x) ⋅ p(X = x)
go over to “hats” to express estimation

results depend strongly on the unknown transition model

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S) ,

which is, however, unidentifiable without further assumptions.
For every l and x the transition model specifies a probability
distribution p(l,x) on (l,𝒫(l)).

Th. Augustin (LMU Munich) Statistics and Imprecise Probabilities 103 / 114



Selected Aspects of Data Imprecision An Ongoing Case Study: Yet Undecided Voters

“Modelling”

For the moment let’s argue without the covariates: p(l,x) ↪ p(l)

Thinking of a concrete example may be helpful; consider, e.g.,
l = {SPD,Left,Green}.
See above: results depend strongly on the unknown transition model.

Therefore, think of the forecast as a function of the transition model
underlying, i.e. consider

⧹︂p(Y ∈ A) [︀(pl)(l∈𝒫(S)) .⌉︀
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“Precise modelling”

Potential ideas to specify the latent transition model precisely:

prophetic: give exact numbers for (pl)(l∈𝒫(S))
transfer knowledge from polls of older elections

uniform (max ent)

p(Y = ℓ ⋃︀Y = l) ∶= 1

⋃︀l⋃︀
homogeneous with respect to the decided

p(Y = ℓ ⋃︀Y = l) ∶= p(Y = {ℓ})
∑ℓ′∈l p(Y = {ℓ′})

noninformativeness of coarsening (CAR: coarsening at random)
(indirect)

∀l ∈ 𝒫(S) ∶ ∀ℓ1, ℓ2 ∈ l ∶
p(Y = ℓ1⋃︀Y = l)
p(Y = ℓ2⋃︀Y = l)

= p(Y = ℓ1)
p(Y = ℓ2)
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Justification of these Assumptions
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Justification of these assumptions

Assumptions specifying the transition
model have to be well-grounded in good
subject-matter arguments, derived from the
domain knowledge.

All the assumptions just stated (and many
more) are indistinguishable by relying on
the data only.

There CANNOT be any meaningful
statistical test to support/reject any of
these assumptions.

Relying on such assumptions just for the
sake of receiving (seemingly) precise
solutions is questionable.

14

14John William Waterhouse: The Crystal Ball (1902)
http://www.wikiart.org/en/john-william-waterhouse/the-crystal-ball-1902,pulicdomain, [Aug 16th, 2022
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What has the Theory of Partial Identification to Offer
here?

Enveloping all scenarios: worst- and best case estimates

When weak, but well- supported information is available, utilize it to
increase precision!
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Enveloping all Possible Specifications of the Transition
Model

What do we know “for sure”?

Consider all possible specifications for

(p(Y = ℓ ⋃︀Y = l,X = x))
ℓ∈S ,l∈𝒫(S)

That is, consider for each l, the set of all probabilities on (l,𝒫(l)).

By assuming error-freeness of coarsening

p(Y ∈ A) ⋃︀Y = l,X = x)) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

0 l ⊆ AC

1 if l ⊆ A
(︀0; 1⌋︀ l ∩A ⇑= ∅ ∧ l ∩AC ⇑= ∅
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Enveloping all Possible Specifications of the Transition
Model (continued)

p(Y ∈ A) ⋃︀Y = l,X = x)) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

0 l ⊆ AC

1 if l ⊆ A
(︀0; 1⌋︀ l ∩A ⇑= ∅ ∧ l ∩AC ⇑= ∅

move probability mass around where not fixed

lower bound (“guarantee”):

P(Y ∈ A) = ∑
l⊆A

p(Y = l)

P(SPD,Gr,FDP) = p(SPD) + p(Gr) + p(FDP) + p(SPD,Gr) + p(SPD,FDP) + p(Gr,FDP) + p(SPD,Gr,FDP)

upper bound (“potential”):

P(Y ∈ A) = ∑
l∩A≠∅

p(Y = l) .

Construction goes back to Dempster (1967, Ann.Math.Stat) and
Shafer (1976, Princeton UP) in the context of fiducial inference and
modelling uncertain knowledge, respectively.
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Dempster Bounds

most cautious analysis:15 appropriate communication of full
uncertainty about transitions

Considerable increase in precision when coalitions are considered! For
instance, being undecided between SPD and Green is a precise vote
for any coalition containing these parties!
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15Figure is taken from Kreiss & Augustin (2021, Arxiv; p. 10)
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Exploit Weak Knowledge about Transition Probabilities

weigh precision and credibility
communication of the uncertainty present
work with plausible weak assumptions not exploitable in traditional
statistics
expert opinions, like: “the undecided between Party I and Party II
tend as least as much to Party I than to Party II”
weaken “precise conditions” by considering neighborhood models
generalized uniform probability: between 50-c% and 50+c% for all
parties16

easy technical handling via linear optimization
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16Figure for c = 30 is taken from Kreiss & Augustin (2021, Arxiv; p. 10)
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Concluding Remarks

IP (including partial identification) offers substantially new
opportunities for sound statistical inference and modelling!

so much yet to develop, explore and apply

Bring in your enthusiasm and expertise!

looking forward to vivid discussions here or later.

thomas.augustin@stat.uni-muenchen.de
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