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Which class of IP models?



Let Ω be a finite possibility space.

A gamble X : Ω→ R is an uncertain reward. We will treat them as elements
X = 〈x1, . . . , xn〉 of Rn.

A set D ⊆ Rn is a coherent set of almost desirable gambles if and only if it
satisfies the following five axioms:

AD1. If X < 0 then X < D (where X < 0⇔ xi < 0 for all i ≤ n)
AD2. If X ≥ 0 then X ∈ D (where X ≥ 0⇔ xi ≥ 0 for all i ≤ n)

H
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AD3. If X ∈ D and λ > 0 then λX ∈ D
AD4. If X ,Y ∈ D then X + Y ∈ D
AD5. If X + ε ∈ D for all ε > 0 then X ∈ D

H

T

convex cone including R2
≥0

excluding R2
<0

H

T

larger set:
more committal model

H

T

open half-space:
precise prob model

H

T

symmetric half-space:
uniform probability

H

T

boundary
infinitesimally biased

H

T

smallest coherent Dv

the vacuous model

Which one is not a coherent set of almost desirable gambles? 2/53



Correspondence Theorem [Walley, 1991, 3.8.1]:
Suppose L is a linear space containing constant gambles. There are 1-to-1
correspondences between the sets of models of the following types:

1. coherent lower previsions on domain L

2. classes of almost-desirable gambles D that are coherent relative to L

3. almost-preference orderings � that are coherent relative to L ×L

4. classes of strictly desirable gambles D+ that are coherent relative to L

5. strict preference orderings � that are coherent relative to L ×L
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Does it even make sense to talk
about the accuracy of sets of
almost desirable gambles?



Desirability: Behavioural Interpretation

• A gamble g : Ω→ R is a random variable that pays out in some
currency/commodity C such that Your utility is linear in C.
• u(£x + y) = u(£x) + u(£y)

• u(£λx) = λu(£x)

• u(x + y tickets) = u(x tickets) + u(y tickets)

• u(λx tickets) = λu(x tickets)

• Strict behaviourism: Believing that g is almost-desirable (g ∈ D) is nothing
more than preferring g + ε over the status quo for all ε > 0.
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How could preferences be correct or incorrect?

Tis not contrary to reason to prefer the de-
struction of the whole world to the scratch-
ing of my finger. Tis not contrary to reason
for me to chuse my total ruin, to prevent the
least uneasiness of... a person wholly un-
known to me. (Hume, A Treatise of Human
Nature, 2.3.3.6)

So long as Your set of almost desirable gambles is coherent, we can’t sensibly talk
of it being more or less “correct”
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Desirability: Doxastic Interpretation

• A gamble g : Ω→ R is random variable whose outcomes are measured in
a ratio or interval scale (e.g. GBP, utility, temperature in Celsius).

ω1 ω2 ω3

g 10◦C 15◦C −20◦C
h −10◦C −20◦C 30◦C

• Primitivism: Believing that g is almost-desirable (g ∈ D) is a peculiarly
doxastic judgment.

• You expect g + ε to take a positive value (for all ε > 0), though there’s no
particular value you expect it to take.
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Have whatever utilities you like...

IDEAL PREFERENCES IDEAL BELIEFS
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Perfection Postulate
The ideal set of almost desirable gambles if ωi is true is given by

Di = {X | xi ≥ 0}

Di contains all and only the gambles that are in fact almost desirable at ωi (or
judged to be almost desirable by God if you like).

• Behaviourism: Di specifies preferences of a fully-informed agent at ωi given
Your utilities

• Primitivism: Di specifies beliefs of a fully-informed agent at ωi given a
particular measurement scale
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Two Ways to Fall Short of God: Type 1 and 2 Error

ω1

ω2

Type I error

Type II error

ω1

ω2

Type I and type II error for world ω1
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Two Ways to Fall Short of God: Type 1 and 2 Error
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Two Ways to Fall Short of God: Type 1 and 2 Error

ω1

ω2

Type I error

Type II error

ω1

ω2

Type I and type II error for world ω2
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Why might we want to provide a
real-valued measure of the
accuracy of sets of almost
desirable gambles?



Let D be the set of all D ⊆ Rn

IP scoring rules are real-valued functions

I : D × Ω→ R≥0

that measure the “accuracy” of sets of almost desirable gambles D.

“Epistemic” or “alethic” (truth-related) loss functions.

• I(D, ωi) is a function of D’s type 1 and type 2 error at ωi

• Type 1/2 are alethic errors: capture the two ways that D diverges from the
“true” or “ideal” set of desirable gambles Di at ωi

• Lower penalties for strictly less type 1 and 2 error
• Moving D uniformly closer to Di improves (lowers) the score

13/53



Motivation

ω1

ω2

⇒
〈
I(D, ω1),I(D, ω2)

〉
• Treat SDGs as gambles

themselves

• Reason about SDGs with
minimal assumptions ([de
Finetti, 1974, 3.3-3.4],
M.J. Schervish [2009], Joyce
[2009])

D < C(D)⇔ (∃D′ ∈ D)D ≺vacuous D
′

⇔ (∃D′ ∈ D)
〈
I(D, ω1),I(D, ω2)

〉
�vacuous

〈
I(D′, ω1),I(D′, ω2)

〉
⇔ (∃D′ ∈ D) I(D, ω1) > I(D′, ω1) & I(D, ω2) > I(D′, ω2)

• Philosophy: Epistemic justification for coherence, updating by conditioning,
etc. 14/53



Forecasting: CDC COVID-19 Case & Hospitalization
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Ensemble Construction

• April 13 - July 21, 2020: average prediction interval;
all eligible models in COVID-19 Forecast Hub

• November 15, 2021: Weighted ensemble forecasts
of incident cases/hospitalizations/deaths and
cumulative deaths

• 10 component models with best performance as measured by their Weighted
Interval Score (WIS) in the 12 weeks prior to the forecast date

• Component models are assigned weights that are a function of their relative
WIS during those 12 weeks

• Models with a stronger record of accuracy receiving higher weight.
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Interval Score

IS0.2(l,u, x) = (u − l) +
2

0.2
(l − x)1(l > x) +

2
0.2

(x − u)1(x > u)
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Motivation

• Aggregation
• Incentivise experts to report IP forecasts, evaluate aggregation procedures

• IP Prediction Markets
• Traders can change market IP forecasts; receive old IP scoring rule penalty; pay

IP new scoring rule penalty

• Medicine
• Evaluating and improving IP expert systems

• Artificial Intelligence
• Training neural net classifiers
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Cautionary Note

Non-starter:

• Propose a few “intuitive” IP scoring rules with a handful of nice properties

• Compare: Absolute value score

Proper Methodology:

• Do the hard work of identifying IP scoring rules that hang together with
coherence axioms, conditioning, etc.

• Otherwise we’ll incentivise...
• ...forecasters to report incoherent IP forecasts
• ...neural net classifiers to learn incoherent IP models
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IP Scoring Rules



Perfection Postulate
The ideal set of almost desirable gambles if ωi is true is given by

Di = {X | xi ≥ 0} ⊆ Rn

Di contains all and only the gambles that are in fact almost desirable at ωi .

DT DH

H

T

H

T
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Type 1 and 2 Error

ω1

ω2

Type I error

Type II error

ω1

ω2

Type I and type II error at world ω1

21/53



Type 1 Error
The type 1 error of D at ωi is given by:

Fi(D) =

∫
D\Di

−φi(x1, . . . , xn) dµ

• φi : Rn
→ R is a type 1/2 penalty function

• φi(X) ≥ 0⇔ xi ≥ 0
• For xi < 0: −φi(X) is a type 1 penalty for falsely judging X almost desirable

when it is not (xi < 0⇒ X < Di).

• BIGMONEY ∈ D but in fact BIGMONEY = −2 (so < Di)

• Type 1 error = −φi(BIGMONEY)

• Fi averages type 1 errors.
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Type 1 Error
The type 1 error of D at ωi is given by:

Fi(D) =

∫
D\Di

−φi(x1, . . . , xn) dµ

• µ is a “nice” measure
• Domain: Borel σ-algebra B(Rn) (smallest σ-algebra containing all open

hypercubes)
• Finite: µ(Rn) < ∞

• Absolute continuity: µ assigns measure zero to every set with product
Lebesgue measure zero
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Type 2 Error
The type 2 error of D at ωi is given by:

Si(D) =

∫
Di\D

φi(x1, . . . , xn)dµ

• For xi ≥ 0: φi(X) is a type 2 penalty for failing to judge X almost desirable
(staying silent) when it is (xi ≥ 0⇒ X ∈ Di).

• BIGMONEY < D but in fact
BIGMONEY = 50000 (so ∈ Di)

• Type 2 error = φi(BIGMONEY)

• Si averages type 2 errors.
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The inaccuracy (epistemic loss, epistemic disutility) of D at ωi is given by:

Ii(D) = Fi(D) + Si(D) =

∫
(D\Di)∪(Di\D)

|φi(x1, . . . , xn) | dµ
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Exercise 1

ω1

ω2

D

Suppose

• I1(D) = F1(D) =
∫
D\D1

−φ1(x , y) dµ

• I2(D) = F2(D) =
∫
D\D2

−φ2(x , y) dµ

where µ assigns positive measure to every non-
degenerate region. Assume φ1/2(x , y) is con-
tinuous and

• φ1(x , y) ≥ 0⇔ x ≥ 0

• φ2(x , y) ≥ 0⇔ y ≥ 0

Show that Dvac = R2
≥0 strictly dominates D,

i.e.,

• I1(Dvac) < I1(D)

• I2(Dvac) < I2(D) 26/53



Exercise 2

A

B C

P Q

R
ω1

ω2D Dp

Suppose

• F1(D) =
∫
D\D1

−x dµ, S1(D) =
∫
D1\D

x dµ

• F2(D) =
∫
D\D2

−y dµ, S2(D) =
∫
D2\D

y dµ

Let Dp =
{
〈x , y〉 | px + (1 − p)y ≥ 0

}
Fill in the following table

F1(D) =
∫

B∪C −x dµ F1(Dp) =
∫

C −x dµ

S1(D) =
∫

P∪Q x dµ S1(Dp) =
∫

P x dµ

F2(D) =
∫

R −y dµ F2(Dp) =
∫

Q∪R −y dµ

S2(D) =
∫

A y dµ S2(Dp) =
∫

A∪B y dµ
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Exercise 2

A

B C

P Q

R
ω1

ω2D Dp

Use your table to calculate

• F1(D) − F1(Dp) =
∫

B −x dµ

• S1(D) − S1(Dp) =
∫

Q x dµ

• F2(D) − F2(Dp) =
∫

Q y dµ

• S2(D) − S2(Dp) =
∫

B −y dµ

Finally show that

p[I1(D) − I1(Dp)] + (1 − p)[I2(D) − I2(Dp)] =

p[F1(D) − F1(Dp) + S1(D) − S1(Dp)]+

+(1 − p)[F2(D) − F2(Dp) + S2(D) − S2(Dp)] ≥ 0
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Type 1/2 Penalty Functions

A type 1/2 penalty function φi : Rn
→ R≥0 is a continuous function that satisfies:

P1. φi(x1, . . . , xn) is strictly increasing in xi and (at least) weakly increasing in xj for
all j ≤ n (Monotonicity)

P2. φi(x1, . . . , xi−1,0, xi+1, . . . , xn) = 0 (Zeroing marginals)

P3. If λ > 0 then φi(λX) = λφi(X) (Positive homogeneity)

P4. φi(X + Y) ≥ φi(X) + φi(Y) (Super-additivity)
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Status of the axioms

P1. φi(x1, . . . , xn) is strictly increasing in xi and (at least) weakly increasing in xj for
all j ≤ n (Monotonicity)

If g dominates h...

• ...and g and h are both almost desirable (∈ Di), then worse to be silent about
g (more type 2 error) ω1 ω2

g -1 100
h -1 0.01

• ...and neither g nor h are almost desirable (< Di), then less bad to judge g
almost desirable (less type 1 error)

ω1 ω2

g 1 -0.01
h 1 -100 30/53



Status of the axioms

P2. φi(x1, . . . , xi−1,0, xi+1, . . . , xn) = 0 (Zeroing marginals)

• Continuity assumption

P3. If λ > 0 then φi(λx) = λφi(x) (Positive homogeneity)

• Guarantees that admissibility (non-dominance) is not affected by positively
rescaling our underlying utility (or measurement system more generally)

• Let D be Your almost-desirable weight-gambles in kg

• Bad if D is admissible, but when we change units to lbs

Ii(D) =

∫
(D\Di)∪(Di\D)

|φi(2.2x1, . . . ,2.2xn) | dµ

D is dominated
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Status of the axioms

P4. φi(X + Y) ≥ φi(X) + φi(Y) (Super-additivity)

Conservativity assumption

φi(X) + φi(−X) ≤ φi(0) = 0

Suppose xi > 0.

• φi(X) is the type 2 error You would incur for failing to judge it desirable to
accept X (as God would)

• −φi(−X) is the type 1 error You incur would for judging it desirable to sell X
(which God would not)

Staying silent about truly desirable gambles is less bad (or no more bad) than
getting it wrong about truly undesirable gambles
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IP Scoring Rules
IP scoring rules are loss functionals of the form

Ii(D) = Fi(D) + Si(D) =

∫
(D\Di)∪(Di\D)

|φi(x1, . . . , xn) | dµ

where the φi : Rn
→ R≥0 are continuous type 1/2 penalty functions that satisfy

P1-P4.
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Special Case



Exercise 3

2-parameter Penalty Function
For some λ ≥ γ > 0 and all i ≤ n

φi(x1, . . . , xn) =

 λxi if xi < 0
γxi if xi ≥ 0

Exercise: Prove that φi satisfies P1-P4.
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Coherence



Closed Convex Cones

f
ω1

ω2

Coherent sets of almost desirable gambles = closed convex cones

D =
{
〈x , y〉 | y ≥ f(x)

}
In the case above, D is called the epigraph of f : R→ R.
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More generally, the epigraph of f : Rn−1
→ [−∞,∞] is

D =
{
〈x1, . . . , xn〉 | xn ≥ f(x1, . . . , xn−1)

}
⊆ Rn

Proposition 1
For every coherent set of almost-desirable gambles D ⊆ Rn

D = Df

for some f : Rn−1
→ [−∞,∞]

We will focus on Df with f : Rn−1
→ R
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Proposition 2

For any f : Rn−1
→ [−∞,∞], Df ⊆ R

n is a coherent set of almost desirable
gambles if and only if

E1. If X ≥ 0 then f(X) ≤ 0 (Include Positive Orthant)

E2. If X ≤ 0 then f(X) ≥ 0 (Exclude Interior of Negative Orthant)

E3. If λ > 0 then f(λX) = λf(X) (Positive homogeneity)

E4. f(X + Y) ≤ f(X) + f(Y) (Sub-additivity)
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ω1

ω2

h

f
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An Instructive Aside: Lindley

[Lindley, 1982, Lemma 2]
If I is a continuously differentiable strictly proper scoring rule, then following
three conditions are equivalent:

1. There are a,b ∈ R s.t.

∇〈a,b〉I0(x , y) = lim
ε→0

1
ε

[I1(x + ε a, y + ε b) − I1(x , y)] < 0

∇〈a,b〉I1(x , y) = lim
ε→0

1
ε

[I0(x + ε a, y + ε b) − I0(x , y)] < 0

2.
0 < posi (

{
∇I0(x , y),∇I1(x , y)

}
)

3. y , 1 − x
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Local Dominance

Nudge 〈0.2,0.4〉 toward 〈0.4,0.6〉 by adding ε 〈0.2,0.2〉 for small ε > 0.

Result: 〈0.2 + ε0.2,0.4 + ε0.2〉
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Local Dominance

∇〈a,b〉Ii(x , y) = lim
ε→0

1
ε

[Ii(x + ε a, y + ε b) − Ii(x , y)]

= 〈a,b〉 · ∇Ii(x , y)

= a
∂Ii

∂x
(x , y) + b

∂Ii

∂y
(x , y)
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Exercise 4

f1(x) =

∫ 1

x
(1 − t) m(t) dt

f0(x) =

∫ x

0
t m(t) dt

I1(x , y) = f1(x) + f0(y)

I0(x , y) = f0(x) + f1(y)

∂I1

∂x
(x , y) = (x − 1)m(x)

∂I1

∂y
(x , y) = y m(y)

∂I0

∂x
(x , y) = x m(x)

∂I0

∂y
(x , y) = (y − 1)m(y)

Brier score: m(x) = 1

Problem: Calculate ∇〈0.2,0.2〉I0(0.2,0.4) and ∇〈0.2,0.2〉I1(0.2,0.4)

Solution:

• (0.2)(0.2) + (0.2)(0.4 − 1) = −0.08
• (0.2)(0.2 − 1) + (0.2)(0.4) = −0.08
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Local Dominance

Nudging 〈0.2,0.4〉 toward 〈0.4,0.6〉 by adding ε 〈0.2,0.2〉 for sufficiently small ε > 0
is guaranteed to improve accuracy (i.e. in both ω1 and ω2)
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Local Dominance

ω1

ω2

∇I0(
1
5 ,

2
5 )

∇I1(
1
5 ,

2
5 )

2x+2y=0

2x+2y=−2/25

• There are a,b ∈ R s.t.

∇〈a,b〉I0(x , y) = 〈a,b〉·∇I0(x , y) < 0

∇〈a,b〉I1(x , y) = 〈a,b〉·∇I1(x , y) < 0

• a = b = 2

• For sufficiently small ε > 0

I0(x+ε2, y+ε2)−I0(x , y) < 0

I1(x+ε2, y+ε2)−I1(x , y) < 0
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Local Dominance: Precise

ω1

ω2

∇I0(x ,y)

∇I1(x ,y)

There are a,b ∈ R s.t.

∇〈a,b〉I0(x , y) < 0

∇〈a,b〉I1(x , y) < 0

iff

0 < posi (
{
∇I0(x , y),∇I1(x , y)

}
)

If I is continuously differentiable
and strictly proper then these
conditions hold iff

y , 1 − x
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Local Dominance and Coherence

Local Dominance, Precise: There are a,b ∈ R s.t. for all i ≤ n

∇〈a,b〉Ii(x , y) = 〈a,b〉 · ∇Ii(x , y) = lim
ε→0

1
ε

[I1(x + ε a, y + ε b) − I1(x , y)] < 0

Let Ii(f) = Ii(Df ).

Local Dominance, Imprecise:1 There is some h : Rn−1
→ R s.t. for all i ≤ n

δIi(f ,h) =

∫
Rn−1

∂Ii

∂f
h dν = lim

ε→0

1
ε

[Ii(f + ε h) − Ii(f)] < 0

First variation—calculus of variations analogue of directional derivative

1For X ⊆ Rn−1, ν(X) =
∫
Rn−1 m(x1, . . . , xn−1, f(x1, . . . , xn−1))dx1 . . .dxn−1 where m is the

Radon–Nikodym derivative of µ wrt the product Lebesgue measure.
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Local Dominance: Imprecise

ω1

ω2

∂I0
∂f

∂I1
∂f

Under certain conditions...

There is some h : R→ R s.t.

δI0(f ,h) =

∫
R

∂I0

∂f
h dν < 0

δI1(f ,h) =

∫
R

∂I1

∂f
h dν < 0

iff

0 < posi

({
∂I0

∂f
,
∂I1

∂f

})
iff

0 < posi
({
φ0(x , f(x)), φ1(x , f(x))

})
47/53



Local Dominance and Coherence

Proposition 3
If I is an IP scoring rule, and φi(x1, . . . , xn−1, f(x1, . . . , xn−1)) ∈ Lp(ν) for some
p > 1 and all i ≤ n, then the following three conditions are equivalent:

1. There is some h : Rn−1
→ R s.t. for all i ≤ n

δIi(f ,h) < 0

2.
0 < posi

({
φi(x1, . . . , xn−1, f(x1, . . . , xn−1)) | i ≤ n

})
3. ???
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Local Dominance and Coherence

Proposition 4
If I is an IP scoring rule and

0 ∈ posi
({
φi(x1, . . . , xn−1, f(x1, . . . , xn−1)) | i ≤ n

})
then Df is a coherent set of almost desirable gambles.

Not locally dominated⇒ Coherent
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Special Case: For some λ ≥ γ > 0, φi(x1, x2, x3) =

 λxi if xi < 0
γxi if xi ≥ 0

Proposition 4
The following two conditions are equivalent:

1. 0 ∈ posi
({
φi(x1, x2, f(x1, x2)) | i ≤ 3

})
2. There are α, β > 0 s.t.

f(x1, x2) =



−γ(αx1+βx2)
λ if x1 ≥ 0, x2 ≥ 0

−λ(αx1+βx2)
γ if x1 < 0, x2 < 0

−(αλx1+βγx2)
γ if x1 < 0, x2 ≥ 0, αλx1 + βγx2 < 0

−(αλx1+βγx2)
λ if x1 < 0, x2 ≥ 0, αλx1 + βγx2 ≥ 0

−(αγx1+βλx2)
γ if x1 ≥ 0, x2 < 0, αγx1 + βλx2 < 0

−(αγx1+βλx2)
λ otherwise

www.wolframcloud.com/obj/jason.konek/Published/K-Model.nb 50/53



See Seidenfeld et al. [2012]
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Conditioning



Let E ⊆ Ω with ωn ∈ E (|E| = m). Let E = 〈e1, . . . ,en〉 be the indicator of E.

The set of conditional almost desirable gambles given E is defined by (see
[Augustin et al., 2014, 1.3.3]):

DE =
{
X
∣∣∣
E
| IEX = 〈e1x1, . . . ,enxn〉 ∈ D

}
⊆ Rm

The conditional type 1/2 penalty functions are given by

ψi(x1, . . . , xm) = φi(e1x1, . . . ,enxn)

Let h(x1, . . . , xm−1) = f(e1x1, . . . ,en−1xn−1)

Proposition 5
If

0 ∈ posi
({
φi(x1, . . . , xn−1, f(x1, . . . , xn−1)) | i ≤ n

})
then

0 ∈ posi (
{
ψi(x1, . . . , xn−1, f(x1, . . . , xn−1)) | i ≤ m

}
)
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