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Recent Research on the Relation between IPs and Causality

• Joint work with IDSIA colleagues     
(Zaffalon, Cabañas and others) 

• Ongoing research (2020 - ... ) 

• Papers and software library available 

• So far, credal nets (CNs) mostly used for: 

– decision-support systems 

– robust machine learning 

• Lot of research on CN inference/complexity 

• Causal ML as a new direction for CNs 

• (Causal) EM/sampling for CN inference

4Alessandro Antonucci, IDSIA



Structural Causal Models

• Manifest endogenous variable  

• Observations  available 

• From  statistical learning of  

• A latent exogenous variable  

• States of  determines those of  
through a structural equation  

•  surjective but not invertible 

•  

• A  giving ? More than one! 

• Credal set  compatible with 

X
!

! P(X)
U

U X
fX

fX
P(x) = ∑

x
P(x |u)P(u) = ∑

u
δf(u),xP(u)

P(U) P(X)
K(U) P(X)
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Boolean  
 

X
P(X = 0) = p

U ∈ {0,1,2,3}

fX(U = 0) = 0
fX(U = 1) = 0
fX(U = 2) = 1

fX(U = 3) = 1

K(U ) = {P(U ) : P(U = 0) + P(U = 1) = p}

P(U ) = [ p
2 , p

2 , 1 − p
2 , 1 − p

2 ]

U

X

fX
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Boolean  
 

X
P(X = 0) = p

U ∈ {0,1,2,3}

fX(U = 0) = 0
fX(U = 1) = 0
fX(U = 2) = 1

fX(U = 3) = 1

K(U ) = {P(U ) : P(U = 0) + P(U = 1) = p}

P(U ) = [ p
2 , p

2 , 1 − p
2 , 1 − p

2 ]

U

X

fX
This is a (minimalistic) 

structural causal model



Structural Causal Models (General Definition)

•  (endogenous variables) 

•  (exogenous variables) 

• Directed graph  assumed to be                      
semi-Markovian = root in , non-root in  

• Equation  for each  

• Marginal  for  (assessed if possible) 

• SCM = BN with CPTs  

• Joint PMF  

• Here discrete vars, continuous case analogous

X := (X1, …, Xn)
U := (U1, …, Um)

$
U X

X = fX(PaX) X ∈ X
P(U) U ∈ U

P(X |PaX) = δX, fX(PaX)
P(x, u) = ∏

U∈U
P(u) ∏

X∈X
δfX(pa)X,x
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SCMs as (one of) the 
most powerful tools    
for causal analyses



Headache Example (Staying on the First Rung)

• You take aspirin ( ) and headache vanishes ( ) 

• Probability that this has been due to aspirin? 

• Observational data  about the two variables available 

• From  ,  >  

• Not genuine causal analysis: adding further covariates 
might give contradictory results (Simpson's paradox)

X = 1 Y = 1

!
! P(Y = 0 |X = 0) = 0.5 P(Y = 0 |X = 1) = 0.1

Alessandro Antonucci, IDSIA

X Y n

0 0 ...

0 1 ....

1 0 ....

1 1 ....
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X Y n

0 0 ...

0 1 ....
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X
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Time to climb up             
the ladder



Take the Aspirin! (Interventions = Second Rung)

• Gender  as an additional (endogenous) variable 

• Markovian  (one exo parent for each endo) 

• Force people to take aspirin = intervention  

•  should be modified (constant output), after a surgery 
on  (incoming arcs removed) intervention = observation  

• Pearl's do calculus allows to reduce interventional queries 
to observational ones (solved by BN inference) 

• E.g., backdoor  

• Do calculus only needs  (and not the SCM)!

Z
$

do(X = 1)
fX

$

P(y |do(X = x)) = ∑
z

P(y |x, z) ⋅ P(z)

$
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Identifiability of Causal Queries

• Do calculus reduces interventional to observational 
queries by exploiting d-separation in SCMs 

• Sound and complete (graph-theoretic) algorithm      
+ inference in the empirical joint PMF 

• Alternatively: surgery and inference in the SCM ... 

• Not all queries can be computed by do calculus.      
If not we call the query unidentifiable 

• Emerging idea: unidentifiable queries are only 
partially identifiable (bounds can be estimated!)          
Recent works by Barenboim's and Shipster's groups

23Alessandro Antonucci, IDSIA
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P(x3 |do(x2) ∈ [l, u]

Optimisation techniques 
for IPs to be used for 
partial identifiability



Back to Headache (Moving to the Third Rung)

• What if I had not taken the aspirin, would have 
headache stayed? 

• An intervention contrasting the current observation ... 

• This is a counterfactual query  
(called probability of necessity, PN, sub denote do) 

• We need the complete SCM:  +  +  

• With complete SCM, an augmented model called twin 
network with duplicated endogenous variables is used 
for counterfactual analysis after surgery 

• (Non-trivial) counterfactuals are unidentifiable! 

P(YX=0 = 0 |X = 1,Y = 1)

$ {fX}X∈X {P(U)}U∈U
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To Compute Counterfactuals ...

• We need a fully specified SCM, i.e., 

1. Graph  over                                                                   
(often available by domain expert or Markovian assumption)  

2. Endogenous equations                                          
(available or obtained by complete enumeration) 

3. Exogenous marginals  (rarely available) 

• Latent  unavailable? We have data  about  

• Compute counterfactual = Compute  from   

• Not a new problem: LP approach for special cases already in Balke 
and Pearl (1994), but do-calculus reduced attention to CFs

$ (X, U)

{fX}X∈X

{P(U)}U∈U
P(U) = ∏P(U) ! X

{P(U)}U∈U !
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Causal Analysis at the Party (Balke & Pearl 1994)

Ann sometimes goes to parties 
Bob is not a party guy,  
but he likes Ann 
and he might be there 
Carl  broke up with Ann,  
he tries to avoid Ann,  
but he likes parties 
Carl and Bob hate each other,  
they might have a Scuffle 
if both at the party

29Alessandro Antonucci, IDSIA
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S

UA

UC

US

UB

besides such knowledge assume  
we have observations  corresponding  

to a joint mass function  
(e.g., in the form of a BN)

!
P(A, B, C, S)

P(B |do(a)) = ?
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A

B C

S

UA

UC

US

UB

besides such knowledge assume  
we have observations  corresponding  

to a joint mass function  
(e.g., in the form of a BN)

!
P(A, B, C, S)

P(B |do(a)) = ?

"Ann must not be 
at the party, 

or Bob would be there 
instead of home"

P(B |do(a)) = ?

"If Bob were 
at the party, 

then Bob and Carl 
would surely Scu!le"

P(Sb |b) = ?

CAUSAL GOSSIP
INTERVENTIONAL COUNTERFACTUAL

a (fully specified) SCM can answer these questions
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∑
uA,uB,uC,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS)] = p̃(a, b, c, s)

• Find the exogenous marginals? 

• Endogenous (= with ) 
consistency 

• This induces global non-linear   
(so-called Verma) constraints 

• Constraints became local and 
linear ones by marginalisation and 
conditioning (Zaffalon et al., 2020)

!

34

B

S

UC

fS(b, c, uS)

fB(a, uB) fC(a, uC)

fA(uA) UA

US

UB A
P(UA)P(UB)P(UC)P(US)

C

UnknownUnknown Empirical, knownUnknown Unknown

Let's (Eventually) Use IPs!
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B

S

UC

fS(b, c, uS)

fB(a, uB) fC(a, uC)

fA(uA) UA

US

UB A

C

Constraining Exogenous Marginals

P(a) = ∑
uA

P(a |uA) ⋅ P(uA)

P(b |a) = ∑
uB

P(b |a, uB) ⋅ P(uB)

P(c |a) = ∑
uC

P(c |a, uC) ⋅ P(uC)

P(s |b, c) = ∑
uS

P(s |b, c, uS) ⋅ P(uS)

∑
uA,uB,uC ,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS )] = p̃(a , b, c, s)

• Linear constraints on marginal exogenous probabilities leading 
to the credal sets specification , , ,  

• Structural equations (= endogenous CPTS) remain unaffected

K(UA) K(UB) K(UC) K(US)
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B

S

UC

fS(b, c, uS)
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fA(uA) UA
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UB A

C

Constraining Exogenous Marginals

P(a) = ∑
uA

P(a |uA) ⋅ P(uA)

P(b |a) = ∑
uB

P(b |a, uB) ⋅ P(uB)

P(c |a) = ∑
uC

P(c |a, uC) ⋅ P(uC)

P(s |b, c) = ∑
uS

P(s |b, c, uS) ⋅ P(uS)

∑
uA,uB,uC ,uD

[p(uA) ⋅ δa, fA(uA) ⋅ p(uB) ⋅ δb, fB(a,uB) ⋅ p(uC) ⋅ δc, fC(a,uc) ⋅ p(uS) ⋅ δs, fS(b,c,uS )] = p̃(a , b, c, s)

• Linear constraints on marginal exogenous probabilities leading 
to the credal sets specification , , ,  

• Structural equations (= endogenous CPTS) remain unaffected

K(UA) K(UB) K(UC) K(US)

SCMs are CN!
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Reducing Causal Queries to CN Inference

• Consistent SCMs as a single CN 

• d-separation holds for CNs,      
we can do surgery à la Pearl 

• CN algs to compute bounds! 

• Interventions are straightforward 

• Counterfactuals require twin nets 

• Identifiable?  P = P

P(B |do(a)) ∈ [P′ (B |a), P′ (B |a)]

B

B'

P(Sb |b) ∈ [P(S |b, b′ ), P(S |b, b′ )]

S



Markovian and Quasi-Markovian SCMs as CNs

43Alessandro Antonucci, IDSIA

Markovian Models

Quasi-Markovian Models



Software and Experiments
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Java library for Causal Inference 
built on the top of CREMA

Java library for CNs

Exact inference by credal variable elimination only for small models 
ApproxLP (Antonucci et al., 2014) allows to process larger models 

RMSE always <0.7%



Intermezzo: Belief Functions (as Credal Sets)

• Linear constraints for CN induced by SCM 
have a peculiar form 

• These are CS corresponding to belief 
functions (Dempster '68, Shafer '76) 

• Class of generalised probabilistic models 

• PMF distributes mass over the singletons, 
BF over (poss. overlapping) sets  

• Dempster's multi-valued mapping,           
in SCMs  ,  

• Dedicated conditioning/combination rules

U = f −1(X) BF(U) := f −1[P(X)]

46Alessandro Antonucci, IDSIA

∑
u : condition

P(u) = const

Credits: Fabio Cuzzolin



Back to SCM2CN: General (Non Quasi-Markovian) Case

• Non Quasi-Markovian? Non-Linear constraint 

• E.g.,  

• Merge exogenous variables  

• Independence constraints can be disregarded 
(but higher exogenous dimensionality) 

• Again CN approximate inference to solve 
causal queries 

• State space dimensionality affects complexity 

• We might have very large latent spaces ...

∑ P(u1) ⋅ P(u2) = …
U := (U1, U2)
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Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

$
P(B |A)
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B

UB

A

b = fB(a, uB)

P(B 
A) A=0 A=1

B=0 1 1

B=1 0 0

A=0 A=1

1 0

0 1

A=0 A=1

0 1

1 0

A=0 A=1

0 0

1 1

B = 0 B = A B = ¬A B = 1

P(B |A)



Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

•  indexing all these deterministic CPTs 

$
P(B |A)
UB

50Alessandro Antonucci, IDSIA

B

UB

A

b = fB(a, uB)

UB=0 UB=1 UB=2 UB=3
A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1

B=0 1 1 1 0 0 1 0 0
B=1 0 0 0 1 1 0 1 1

U=0 U=1 U=2 U=3

B = 0 B = A B = ¬A B = 1

P(B |A, U)



Conservative Specification of Structural Equations

• Finding the equations given  only 

•  should be a deterministic CPT 

•  indexing all these deterministic CPTs 

• Knowledge might discard some states     
(ex., Bob goes to the party if Ann does) 

• With Boolean parent & child)    
in general (exp size) : 

  

$
P(B |A)
UB

|U | = 4

|U | = |X |∏Y∈PaY
|Y|
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B

UB

A

b = fB(a, uB)

B = 0 B = A B = ¬A B = 1

P(B |A, U)
UB=0 UB=1 UB=2 UB=3

A=0 A=1 A=0 A=1 A=0 A=1 A=0 A=1
B=0 1 1 1 0 0 1 0 0
B=1 0 0 0 1 1 0 1 1

U=0 U=1 U=2 U=3

CFs based on         
 and  only$ !



An Application: Counterfactual Analysis in Palliative Cares 
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• Study of terminally ill cancer 
patients’ preferences wrt their 
place of death (home or hospital) 

•  obtained by expert 
knowledge and data 

• Exogenous variables? 

• Markovian assumption             
(= no confounders)

$



An Application: Counterfactual Analysis in Palliative Cares 
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• Most patients prefer to die at home 

• But a majority actually die in institutional settings 

• Interventions by health care professionals can facilitate dying at home?



An Application: Counterfactual Analysis in Palliative Cares 
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• Importance of a variable?  

• Probability of necessity and sufficiency

PNS := P(YX=1 = 1,YX=0 = 0)



An Application: Counterfactual Analysis in Palliative Cares 
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• Importance of a variable?  

• Probability of necessity and sufficiency

PNS := P(YX=1 = 1,YX=0 = 0)
Small CN but large 

cardinalities 
CF inference 

demanding ...



Causal Expectation Maximisation (Zaffalon et al., 2021)

• Exogenous variables are always missing         
(MAR, asystematic, way) 

• Expectation Maximisation (Dempster  1977) 

– Random initialisation of P(U) 

– E-step: Missing data completion by 
expected (fractional) counts 

– M-step: "completed" data to retrain P(U) 

– Iterate until convergence 

• EM goes to a (local/global) max of log P(!)

59Alessandro Antonucci, IDSIA

U1 U2 X1 X2 n
* * 0 0 ...
* * 0 1 ...
* * 1 0 ...
* * 1 1 ...



Casual EM: Likelihood Unimodality
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• Causal EM reduce should converge to global maxima only the 
corresponding  belongs to credal set  

• Sampling initialisations = sampling of   

• For each sample we obtain an inner point

P(U) K(U)
K(U)

LL

global optimum 

area of 



Casual EM: Guarantees?
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• We first reduced causal queries to CN inference 

• Causal EM reduces CN inference to (iterated) BN inference 

• Identifiable queries? Each sample gives the same values        
(a numerical alternative to do-calculus) 

• Unidentifiable? Each sample as an inner point 

• Credible intervals can be derived

In practice? 
 20 EM runs to get close to the actual 

bounds with 95% credibility 
For identifiable queries 9 runs to be 

sure with 99% credibility



Causal EM: Experiments
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PNS for artificial SMCs: quick convergence 
(= much faster than direct CN approach)

emer



Counterfactual Analysis in Palliative Cares by Causal EM
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• Importance of a variable?  

• Probability of necessity and sufficiency 

• 15 EM runs before convergence

PNS := P(YX=1 = 1,YX=0 = 0)

PNS(Triangolo) ∈ [0.30,0.31]PNS(Patient_Awareness) ∈ [0.03,0.10]

PNS(Family_Awareness) ∈ [0.06,0.10]
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• Importance of a variable?  

• Probability of necessity and sufficiency 

• 15 EM runs before convergence

PNS := P(YX=1 = 1,YX=0 = 0)

PNS(Triangolo) ∈ [0.30,0.31]PNS(Patient_Awareness) ∈ [0.03,0.10]

PNS(Family_Awareness) ∈ [0.06,0.10]

One should act on Triangolo first: for instance, 
by making Triangolo available to all patients, we 

should expect a reduction of people at the 
hospital by 30% 

This would save money too, and would allow 
politicians to do economic considerations as to 
which amount it is even economically profitable 

to fund Triangolo, and have patients die at 
home, rather than spending more to have 

patients die at the hospital



Reasons for Causal AI: XAI
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• (Model-agnostic) XAI tools 
are observational 

• Ex. Local Interpretable 
Model-agnostic 
Explanations (LIME) 

• No genuine CF analysis 

• Results prone to attacks/
contractions



Explaining Reinforcement Learning Agents

• Agent operating in state space  

• Set of actions  

• Q(uality)-value function  available for 
each  and  

• Greedy agent  

• For each feature  compute its saliency  

•  perturbation of  obtained by changing 
the value of  

•  corresponds to the Q-value change 

• E.g., Iyer (2018):  = 

(
)s

Q(s, a)
s ∈ ( a ∈ )s

̂a = arg max
a

Q(a, s)

f S[ f ]
s′ s

f
S[ f ]

S[ f ] Q(s, ̂a) − Q(s′ , ̂a)
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same issues 
as for classifiers/

regressors

• Saliency maps can 
be created by means 
of the computed 
saliency levels



Counterfactual Explanations

• Causal analysis distringuishes between 
observations and interventions

 

• This allows for WHAT-IF reasoning 
Counterfactuals?  

• “if an input datapoint were x′ instead of 
x, then an ML model’s output would be 
y′ instead of y

P(X |y) ≠ P(X |do(y))

P(x′ |x, y, do(y′ ))
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SCM



Conclusions

• Causality has an intimate connection with IPs 

• Past CN research might offer new tools for causal analysis 

• But more than that IPs offer formalism for a deeper 
understanding of those (structural causal) models 

• Lot of works has to be done, causal machine (and reinforcement) 
learning are just at the beginning!

68Alessandro Antonucci, IDSIA
https://xkcd.com/2620/



Conclusions

• Causality has an intimate connection with IPs 

• Past CN research might offer new tools for causal analysis 

• But more than that IPs offer formalism for a deeper 
understanding of those (structural causal) models 

• Lot of works has to be done, causal machine (and reinforcement) 
learning are just at the beginning!

69Alessandro Antonucci, IDSIA
https://xkcd.com/2620/

alessandro@idsia.ch

mailto:alessandro@idsia.ch

