
Lecture 2 Section 3: Probabilistic Argumentation

Fabio G. Cozman Universidade de São Paulo - Brazil

- Argumentation is a key element of intelligence (old topic!).
- Deductive argumentation is just one possibility.
- Argumentation may be non-monotonic, may involve persuasion, negotiation, preferences and decisions...
- ▶ It may be necessary to mine and to weigh arguments.

A bit of abstract argumentation

▶ Dung (1995): arguments and attacks.

Many variants!

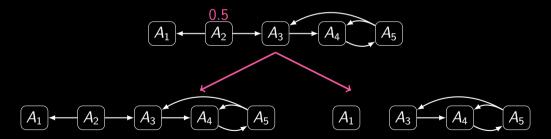
- Preferences, probabilities, etc.
- Supports: *bipolar* argumentation frameworks.

- ► Arguments can be accepted (In), rejected (Out), undecided.
- Then, an *admissible* labeling is a conflict-free labeling such that the accepted arguments defend themselves against attackers.
- And a complete labeling is a conflict-free labeling whose accepted arguments cannot be further enlarged by the "defend" relation.

Grounded: complete with minimum number of accepted arguments.

Preferred: complete with maximum number of accepted arguments.

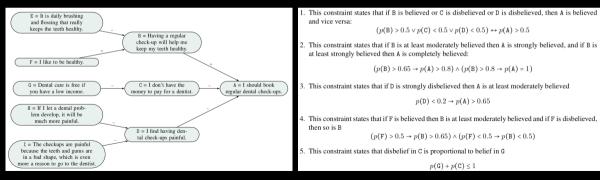
Stable: complete with no undecided arguments. **Semi-stable:** complete with minimum number of undecided arguments.


Example (Hunter et al. 2021)

Labeling	a_1	a_2	a_3	a_4	a_5	\mathcal{AD}	СО	\mathcal{GR}	\mathcal{PR}	\mathcal{ST}
$\mathcal{L}ab_1$	undec	undec	undec	undec	undec	\checkmark	×	×	×	×
$\mathcal{L}ab_2$	out	in	out	undec	undec	\checkmark	\checkmark	\checkmark	×	×
$\mathcal{L}ab_3$	undec	undec	out	out	in	\checkmark	×	×	×	×
$\mathcal{L}ab_4$	out	in	out	out	in	\checkmark	\checkmark	×	\checkmark	\checkmark
$\mathcal{L}ab_5$	out	in	out	in	out	\checkmark	\checkmark	×	\checkmark	\checkmark

Probabilistic argumentation: Constellation approach

Here an argument (and perhaps an attack) has a probability that it is in the argumentation graph.



- Independence assumptions are almost always taken to guarantee point probabilities.
 - If not, we obtain a credal set over arguments (Fazzinga, Flesca, Furfaro 2022).
- Intuition: someone looking at an agent is evaluating her arguments.

- ► Each argument is associated with a probability.
 - ▶ That it is "true", or perhaps "accepted".
- ► Attacks impose probabilistic constraints.
 - For instance, if $A \to B$, then $\mathbb{P}(A) > 1/2$ implies $\mathbb{P}(B) \le 1/2$ (the *rationality* constraint/postulate).
- ▶ If constraints are adopted, then they lead to probability bounds.
 - Many constraints can be connected with coherence notions (Baroni, Giacomin, Vicig 2014).

Epistemic graphs (Hunter, Polberg, Thimm 2020)

 Argumentation graph and a collection of probabilistic constraints.

Assumption-based argumentation

- Dung's abstract argumentation frameworks are perhaps too abstract.
- There are approaches where the structure of arguments is explicitly specified.
- Most (all?) of them are in essence equivalent to logic programming.
 - Their probabilistic versions can be viewed as versions of probabilistic logic programming...
 - what we saw there applies to assumption-based probabilistic argumentation.